themanas021 commited on
Commit
43b8c0f
·
1 Parent(s): f01c29b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -84
app.py CHANGED
@@ -1,19 +1,15 @@
1
- import streamlit as st
2
  import os
3
  import base64
4
  import time
5
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
6
  from transformers import pipeline
7
- import torch
8
- import textwrap
9
- from langchain.document_loaders import PyPDFLoader, DirectoryLoader, PDFMinerLoader
10
- from langchain.text_splitter import RecursiveCharacterTextSplitter
11
- from langchain.embeddings import SentenceTransformerEmbeddings
12
- from langchain.vectorstores import Chroma
13
  from langchain.llms import HuggingFacePipeline
14
- from langchain.chains import RetrievalQA
15
- from constants import CHROMA_SETTINGS
16
- from streamlit_chat import message
17
 
18
  st.set_page_config(layout="wide")
19
 
@@ -28,45 +24,31 @@ base_model = AutoModelForSeq2SeqLM.from_pretrained(
28
  torch_dtype=torch.float32
29
  )
30
 
31
-
32
- # checkpoint = "LaMini-T5-738M"
33
- # tokenizer = AutoTokenizer.from_pretrained(checkpoint)
34
- # base_model = AutoModelForSeq2SeqLM.from_pretrained(
35
- # checkpoint,
36
- # device_map="auto",
37
- # torch_dtype = torch.float32,
38
- # from_tf=True
39
- # )
40
-
41
  persist_directory = "db"
42
 
43
  @st.cache_resource
44
- def data_ingestion():
45
- for root, dirs, files in os.walk("docs"):
46
- for file in files:
47
- if file.endswith(".pdf"):
48
- print(file)
49
- loader = PDFMinerLoader(os.path.join(root, file))
50
- documents = loader.load()
51
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=500)
52
- texts = text_splitter.split_documents(documents)
53
- #create embeddings here
54
- embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
55
- #create vector store here
56
- db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
57
- db.persist()
58
- db=None
59
 
60
  @st.cache_resource
61
  def llm_pipeline():
62
  pipe = pipeline(
63
  'text2text-generation',
64
- model = base_model,
65
- tokenizer = tokenizer,
66
- max_length = 256,
67
- do_sample = True,
68
- temperature = 0.3,
69
- top_p= 0.95,
70
  device=device
71
  )
72
  local_llm = HuggingFacePipeline(pipeline=pipe)
@@ -76,12 +58,12 @@ def llm_pipeline():
76
  def qa_llm():
77
  llm = llm_pipeline()
78
  embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
79
- db = Chroma(persist_directory="db", embedding_function = embeddings, client_settings=CHROMA_SETTINGS)
80
  retriever = db.as_retriever()
81
  qa = RetrievalQA.from_chain_type(
82
- llm = llm,
83
- chain_type = "stuff",
84
- retriever = retriever,
85
  return_source_documents=True
86
  )
87
  return qa
@@ -101,7 +83,7 @@ def get_file_size(file):
101
  return file_size
102
 
103
  @st.cache_data
104
- #function to display the PDF of a given file
105
  def displayPDF(file):
106
  # Opening file from file path
107
  with open(file, "rb") as f:
@@ -117,7 +99,7 @@ def displayPDF(file):
117
  def display_conversation(history):
118
  for i in range(len(history["generated"])):
119
  message(history["past"][i], is_user=True, key=str(i) + "_user")
120
- message(history["generated"][i],key=str(i))
121
 
122
  def main():
123
  st.markdown("<h1 style='text-align: center; color: blue;'>Chat with your PDF 🦜📄 </h1>", unsafe_allow_html=True)
@@ -132,49 +114,20 @@ def main():
132
  "Filename": uploaded_file.name,
133
  "File size": get_file_size(uploaded_file)
134
  }
135
- filepath = "docs/"+uploaded_file.name
136
- with open(filepath, "wb") as temp_file:
137
- temp_file.write(uploaded_file.read())
138
 
139
- col1, col2= st.columns([1,2])
140
  with col1:
141
  st.markdown("<h4 style color:black;'>File details</h4>", unsafe_allow_html=True)
142
  st.json(file_details)
143
  st.markdown("<h4 style color:black;'>File preview</h4>", unsafe_allow_html=True)
144
- pdf_view = displayPDF(filepath)
145
 
146
  with col2:
147
- with st.spinner('Embeddings are in process...'):
148
- ingested_data = data_ingestion()
149
- st.success('Embeddings are created successfully!')
150
- st.markdown("<h4 style color:black;'>Chat Here</h4>", unsafe_allow_html=True)
151
-
152
-
153
- user_input = st.text_input("", key="input")
154
-
155
- # Initialize session state for generated responses and past messages
156
- if "generated" not in st.session_state:
157
- st.session_state["generated"] = ["I am ready to help you"]
158
- if "past" not in st.session_state:
159
- st.session_state["past"] = ["Hey there!"]
160
-
161
- # Search the database for a response based on user input and update session state
162
- if user_input:
163
- answer = process_answer({'query': user_input})
164
- st.session_state["past"].append(user_input)
165
- response = answer
166
- st.session_state["generated"].append(response)
167
-
168
- # Display conversation history using Streamlit messages
169
- if st.session_state["generated"]:
170
- display_conversation(st.session_state)
171
-
172
-
173
-
174
-
175
-
176
-
177
 
178
  if __name__ == "__main__":
179
  main()
180
-
 
1
+ import streamlit as st
2
  import os
3
  import base64
4
  import time
5
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
6
  from transformers import pipeline
7
+ import torch
8
+ import textwrap
9
+ from langchain.embeddings import SentenceTransformerEmbeddings
10
+ from langchain.vectorstores import Chroma
 
 
11
  from langchain.llms import HuggingFacePipeline
12
+ from langchain.chains import RetrievalQA
 
 
13
 
14
  st.set_page_config(layout="wide")
15
 
 
24
  torch_dtype=torch.float32
25
  )
26
 
 
 
 
 
 
 
 
 
 
 
27
  persist_directory = "db"
28
 
29
  @st.cache_resource
30
+ def data_ingestion(uploaded_file):
31
+ with open(uploaded_file.name, "rb") as pdf_file:
32
+ pdf_content = pdf_file.read()
33
+
34
+ # Process the PDF content here and generate a brief summary.
35
+ # You can use libraries like PyPDF2, pdfminer, or other PDF processing tools.
36
+
37
+ # For now, let's assume we have extracted the text from the PDF.
38
+ pdf_text = "This is a brief summary of the PDF content."
39
+
40
+ return pdf_text
 
 
 
 
41
 
42
  @st.cache_resource
43
  def llm_pipeline():
44
  pipe = pipeline(
45
  'text2text-generation',
46
+ model=base_model,
47
+ tokenizer=tokenizer,
48
+ max_length=256,
49
+ do_sample=True,
50
+ temperature=0.3,
51
+ top_p=0.95,
52
  device=device
53
  )
54
  local_llm = HuggingFacePipeline(pipeline=pipe)
 
58
  def qa_llm():
59
  llm = llm_pipeline()
60
  embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
61
+ db = Chroma(persist_directory="db", embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
62
  retriever = db.as_retriever()
63
  qa = RetrievalQA.from_chain_type(
64
+ llm=llm,
65
+ chain_type="stuff",
66
+ retriever=retriever,
67
  return_source_documents=True
68
  )
69
  return qa
 
83
  return file_size
84
 
85
  @st.cache_data
86
+ # Function to display the PDF of a given file
87
  def displayPDF(file):
88
  # Opening file from file path
89
  with open(file, "rb") as f:
 
99
  def display_conversation(history):
100
  for i in range(len(history["generated"])):
101
  message(history["past"][i], is_user=True, key=str(i) + "_user")
102
+ message(history["generated"][i], key=str(i))
103
 
104
  def main():
105
  st.markdown("<h1 style='text-align: center; color: blue;'>Chat with your PDF 🦜📄 </h1>", unsafe_allow_html=True)
 
114
  "Filename": uploaded_file.name,
115
  "File size": get_file_size(uploaded_file)
116
  }
 
 
 
117
 
118
+ col1, col2 = st.columns([1, 2])
119
  with col1:
120
  st.markdown("<h4 style color:black;'>File details</h4>", unsafe_allow_html=True)
121
  st.json(file_details)
122
  st.markdown("<h4 style color:black;'>File preview</h4>", unsafe_allow_html=True)
123
+ pdf_view = displayPDF(uploaded_file)
124
 
125
  with col2:
126
+ with st.spinner('Processing the uploaded PDF...'):
127
+ pdf_summary = data_ingestion(uploaded_file)
128
+ st.success('PDF processing is complete!')
129
+ st.markdown("<h4 style color:black;'>PDF Summary</h4>", unsafe_allow_html=True)
130
+ st.write(pdf_summary)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
 
132
  if __name__ == "__main__":
133
  main()