Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
| 4 |
+
|
| 5 |
+
# Set device
|
| 6 |
+
device = "mps" if torch.backends.mps.is_available() else "cuda" if torch.cuda.is_available() else "cpu"
|
| 7 |
+
|
| 8 |
+
# Load model and tokenizer
|
| 9 |
+
model_path = "thenHung/question_decomposer_t5"
|
| 10 |
+
tokenizer = T5Tokenizer.from_pretrained(model_path)
|
| 11 |
+
model = T5ForConditionalGeneration.from_pretrained(model_path)
|
| 12 |
+
model.to(device)
|
| 13 |
+
model.eval()
|
| 14 |
+
|
| 15 |
+
def decompose_question(question):
|
| 16 |
+
"""
|
| 17 |
+
Decompose a complex question into sub-questions
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
question (str): Input complex question
|
| 21 |
+
|
| 22 |
+
Returns:
|
| 23 |
+
list: List of decomposed sub-questions
|
| 24 |
+
"""
|
| 25 |
+
try:
|
| 26 |
+
# Prepare input
|
| 27 |
+
input_text = f"decompose question: {question}"
|
| 28 |
+
input_ids = tokenizer(
|
| 29 |
+
input_text,
|
| 30 |
+
max_length=128,
|
| 31 |
+
padding="max_length",
|
| 32 |
+
truncation=True,
|
| 33 |
+
return_tensors="pt"
|
| 34 |
+
).input_ids.to(device)
|
| 35 |
+
|
| 36 |
+
# Generate sub-questions
|
| 37 |
+
with torch.no_grad():
|
| 38 |
+
outputs = model.generate(
|
| 39 |
+
input_ids,
|
| 40 |
+
max_length=128,
|
| 41 |
+
num_beams=4,
|
| 42 |
+
early_stopping=True
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
# Decode and split output
|
| 46 |
+
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 47 |
+
sub_questions = decoded_output.split(" [SEP] ")
|
| 48 |
+
|
| 49 |
+
return sub_questions
|
| 50 |
+
except Exception as e:
|
| 51 |
+
return [f"Error: {str(e)}"]
|
| 52 |
+
|
| 53 |
+
# Create Gradio interface
|
| 54 |
+
demo = gr.Interface(
|
| 55 |
+
fn=decompose_question,
|
| 56 |
+
inputs=gr.Textbox(label="Enter your complex question"),
|
| 57 |
+
outputs=gr.JSON(label="Decomposed Sub-Questions"),
|
| 58 |
+
title="Question Decomposer",
|
| 59 |
+
description="Breaks down complex questions into simpler sub-questions using a T5 model",
|
| 60 |
+
examples=[
|
| 61 |
+
"Who is taller between John and Mary?",
|
| 62 |
+
"What is the capital of Vietnam and the largest city in Vietnam?",
|
| 63 |
+
]
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# Launch the app
|
| 67 |
+
if __name__ == "__main__":
|
| 68 |
+
demo.launch()
|