_Noxty
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -529,176 +529,6 @@ def if_done_multi(done, ps):
|
|
529 |
done[0] = True
|
530 |
|
531 |
|
532 |
-
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
|
533 |
-
sr = sr_dict[sr]
|
534 |
-
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
535 |
-
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
|
536 |
-
f.close()
|
537 |
-
cmd = (
|
538 |
-
config.python_cmd
|
539 |
-
+ " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s "
|
540 |
-
% (trainset_dir, sr, n_p, now_dir, exp_dir)
|
541 |
-
+ str(config.noparallel)
|
542 |
-
)
|
543 |
-
print(cmd)
|
544 |
-
p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
|
545 |
-
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
546 |
-
done = [False]
|
547 |
-
threading.Thread(
|
548 |
-
target=if_done,
|
549 |
-
args=(
|
550 |
-
done,
|
551 |
-
p,
|
552 |
-
),
|
553 |
-
).start()
|
554 |
-
while 1:
|
555 |
-
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
556 |
-
yield (f.read())
|
557 |
-
sleep(1)
|
558 |
-
if done[0] == True:
|
559 |
-
break
|
560 |
-
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
561 |
-
log = f.read()
|
562 |
-
print(log)
|
563 |
-
yield log
|
564 |
-
|
565 |
-
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
|
566 |
-
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, echl):
|
567 |
-
gpus = gpus.split("-")
|
568 |
-
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
569 |
-
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
|
570 |
-
f.close()
|
571 |
-
if if_f0:
|
572 |
-
cmd = config.python_cmd + " extract_f0_print.py %s/logs/%s %s %s %s" % (
|
573 |
-
now_dir,
|
574 |
-
exp_dir,
|
575 |
-
n_p,
|
576 |
-
f0method,
|
577 |
-
echl,
|
578 |
-
)
|
579 |
-
print(cmd)
|
580 |
-
p = Popen(cmd, shell=True, cwd=now_dir) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
|
581 |
-
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
582 |
-
done = [False]
|
583 |
-
threading.Thread(
|
584 |
-
target=if_done,
|
585 |
-
args=(
|
586 |
-
done,
|
587 |
-
p,
|
588 |
-
),
|
589 |
-
).start()
|
590 |
-
while 1:
|
591 |
-
with open(
|
592 |
-
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
|
593 |
-
) as f:
|
594 |
-
yield (f.read())
|
595 |
-
sleep(1)
|
596 |
-
if done[0] == True:
|
597 |
-
break
|
598 |
-
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
599 |
-
log = f.read()
|
600 |
-
print(log)
|
601 |
-
yield log
|
602 |
-
####对不同part分别开多进程
|
603 |
-
"""
|
604 |
-
n_part=int(sys.argv[1])
|
605 |
-
i_part=int(sys.argv[2])
|
606 |
-
i_gpu=sys.argv[3]
|
607 |
-
exp_dir=sys.argv[4]
|
608 |
-
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
|
609 |
-
"""
|
610 |
-
leng = len(gpus)
|
611 |
-
ps = []
|
612 |
-
for idx, n_g in enumerate(gpus):
|
613 |
-
cmd = (
|
614 |
-
config.python_cmd
|
615 |
-
+ " extract_feature_print.py %s %s %s %s %s/logs/%s %s"
|
616 |
-
% (
|
617 |
-
config.device,
|
618 |
-
leng,
|
619 |
-
idx,
|
620 |
-
n_g,
|
621 |
-
now_dir,
|
622 |
-
exp_dir,
|
623 |
-
version19,
|
624 |
-
)
|
625 |
-
)
|
626 |
-
print(cmd)
|
627 |
-
p = Popen(
|
628 |
-
cmd, shell=True, cwd=now_dir
|
629 |
-
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
630 |
-
ps.append(p)
|
631 |
-
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
632 |
-
done = [False]
|
633 |
-
threading.Thread(
|
634 |
-
target=if_done_multi,
|
635 |
-
args=(
|
636 |
-
done,
|
637 |
-
ps,
|
638 |
-
),
|
639 |
-
).start()
|
640 |
-
while 1:
|
641 |
-
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
642 |
-
yield (f.read())
|
643 |
-
sleep(1)
|
644 |
-
if done[0] == True:
|
645 |
-
break
|
646 |
-
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
647 |
-
log = f.read()
|
648 |
-
print(log)
|
649 |
-
yield log
|
650 |
-
|
651 |
-
|
652 |
-
def change_sr2(sr2, if_f0_3, version19):
|
653 |
-
path_str = "" if version19 == "v1" else "_v2"
|
654 |
-
f0_str = "f0" if if_f0_3 else ""
|
655 |
-
if_pretrained_generator_exist = os.access("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK)
|
656 |
-
if_pretrained_discriminator_exist = os.access("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK)
|
657 |
-
if (if_pretrained_generator_exist == False):
|
658 |
-
print("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
|
659 |
-
if (if_pretrained_discriminator_exist == False):
|
660 |
-
print("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
|
661 |
-
return (
|
662 |
-
("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_generator_exist else "",
|
663 |
-
("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_discriminator_exist else "",
|
664 |
-
{"visible": True, "__type__": "update"}
|
665 |
-
)
|
666 |
-
|
667 |
-
def change_version19(sr2, if_f0_3, version19):
|
668 |
-
path_str = "" if version19 == "v1" else "_v2"
|
669 |
-
f0_str = "f0" if if_f0_3 else ""
|
670 |
-
if_pretrained_generator_exist = os.access("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK)
|
671 |
-
if_pretrained_discriminator_exist = os.access("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK)
|
672 |
-
if (if_pretrained_generator_exist == False):
|
673 |
-
print("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
|
674 |
-
if (if_pretrained_discriminator_exist == False):
|
675 |
-
print("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
|
676 |
-
return (
|
677 |
-
("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_generator_exist else "",
|
678 |
-
("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_discriminator_exist else "",
|
679 |
-
)
|
680 |
-
|
681 |
-
|
682 |
-
def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15
|
683 |
-
path_str = "" if version19 == "v1" else "_v2"
|
684 |
-
if_pretrained_generator_exist = os.access("pretrained%s/f0G%s.pth" % (path_str, sr2), os.F_OK)
|
685 |
-
if_pretrained_discriminator_exist = os.access("pretrained%s/f0D%s.pth" % (path_str, sr2), os.F_OK)
|
686 |
-
if (if_pretrained_generator_exist == False):
|
687 |
-
print("pretrained%s/f0G%s.pth" % (path_str, sr2), "not exist, will not use pretrained model")
|
688 |
-
if (if_pretrained_discriminator_exist == False):
|
689 |
-
print("pretrained%s/f0D%s.pth" % (path_str, sr2), "not exist, will not use pretrained model")
|
690 |
-
if if_f0_3:
|
691 |
-
return (
|
692 |
-
{"visible": True, "__type__": "update"},
|
693 |
-
"pretrained%s/f0G%s.pth" % (path_str, sr2) if if_pretrained_generator_exist else "",
|
694 |
-
"pretrained%s/f0D%s.pth" % (path_str, sr2) if if_pretrained_discriminator_exist else "",
|
695 |
-
)
|
696 |
-
return (
|
697 |
-
{"visible": False, "__type__": "update"},
|
698 |
-
("pretrained%s/G%s.pth" % (path_str, sr2)) if if_pretrained_generator_exist else "",
|
699 |
-
("pretrained%s/D%s.pth" % (path_str, sr2)) if if_pretrained_discriminator_exist else "",
|
700 |
-
)
|
701 |
-
|
702 |
|
703 |
global log_interval
|
704 |
|
@@ -717,446 +547,9 @@ def set_log_interval(exp_dir, batch_size12):
|
|
717 |
log_interval += 1
|
718 |
return log_interval
|
719 |
|
720 |
-
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
|
721 |
-
def click_train(
|
722 |
-
exp_dir1,
|
723 |
-
sr2,
|
724 |
-
if_f0_3,
|
725 |
-
spk_id5,
|
726 |
-
save_epoch10,
|
727 |
-
total_epoch11,
|
728 |
-
batch_size12,
|
729 |
-
if_save_latest13,
|
730 |
-
pretrained_G14,
|
731 |
-
pretrained_D15,
|
732 |
-
gpus16,
|
733 |
-
if_cache_gpu17,
|
734 |
-
if_save_every_weights18,
|
735 |
-
version19,
|
736 |
-
):
|
737 |
-
CSVutil('csvdb/stop.csv', 'w+', 'formanting', False)
|
738 |
-
# 生成filelist
|
739 |
-
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
740 |
-
os.makedirs(exp_dir, exist_ok=True)
|
741 |
-
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
742 |
-
feature_dir = (
|
743 |
-
"%s/3_feature256" % (exp_dir)
|
744 |
-
if version19 == "v1"
|
745 |
-
else "%s/3_feature768" % (exp_dir)
|
746 |
-
)
|
747 |
-
|
748 |
-
log_interval = set_log_interval(exp_dir, batch_size12)
|
749 |
-
|
750 |
-
if if_f0_3:
|
751 |
-
f0_dir = "%s/2a_f0" % (exp_dir)
|
752 |
-
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
753 |
-
names = (
|
754 |
-
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
755 |
-
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
756 |
-
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
757 |
-
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
758 |
-
)
|
759 |
-
else:
|
760 |
-
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
761 |
-
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
762 |
-
)
|
763 |
-
opt = []
|
764 |
-
for name in names:
|
765 |
-
if if_f0_3:
|
766 |
-
opt.append(
|
767 |
-
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
768 |
-
% (
|
769 |
-
gt_wavs_dir.replace("\\", "\\\\"),
|
770 |
-
name,
|
771 |
-
feature_dir.replace("\\", "\\\\"),
|
772 |
-
name,
|
773 |
-
f0_dir.replace("\\", "\\\\"),
|
774 |
-
name,
|
775 |
-
f0nsf_dir.replace("\\", "\\\\"),
|
776 |
-
name,
|
777 |
-
spk_id5,
|
778 |
-
)
|
779 |
-
)
|
780 |
-
else:
|
781 |
-
opt.append(
|
782 |
-
"%s/%s.wav|%s/%s.npy|%s"
|
783 |
-
% (
|
784 |
-
gt_wavs_dir.replace("\\", "\\\\"),
|
785 |
-
name,
|
786 |
-
feature_dir.replace("\\", "\\\\"),
|
787 |
-
name,
|
788 |
-
spk_id5,
|
789 |
-
)
|
790 |
-
)
|
791 |
-
fea_dim = 256 if version19 == "v1" else 768
|
792 |
-
if if_f0_3:
|
793 |
-
for _ in range(2):
|
794 |
-
opt.append(
|
795 |
-
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
796 |
-
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
797 |
-
)
|
798 |
-
else:
|
799 |
-
for _ in range(2):
|
800 |
-
opt.append(
|
801 |
-
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
802 |
-
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
803 |
-
)
|
804 |
-
shuffle(opt)
|
805 |
-
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
806 |
-
f.write("\n".join(opt))
|
807 |
-
print("write filelist done")
|
808 |
-
# 生成config#无需生成config
|
809 |
-
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
|
810 |
-
print("use gpus:", gpus16)
|
811 |
-
if pretrained_G14 == "":
|
812 |
-
print("no pretrained Generator")
|
813 |
-
if pretrained_D15 == "":
|
814 |
-
print("no pretrained Discriminator")
|
815 |
-
if gpus16:
|
816 |
-
cmd = (
|
817 |
-
config.python_cmd
|
818 |
-
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s -li %s"
|
819 |
-
% (
|
820 |
-
exp_dir1,
|
821 |
-
sr2,
|
822 |
-
1 if if_f0_3 else 0,
|
823 |
-
batch_size12,
|
824 |
-
gpus16,
|
825 |
-
total_epoch11,
|
826 |
-
save_epoch10,
|
827 |
-
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "",
|
828 |
-
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "",
|
829 |
-
1 if if_save_latest13 == True else 0,
|
830 |
-
1 if if_cache_gpu17 == True else 0,
|
831 |
-
1 if if_save_every_weights18 == True else 0,
|
832 |
-
version19,
|
833 |
-
log_interval,
|
834 |
-
)
|
835 |
-
)
|
836 |
-
else:
|
837 |
-
cmd = (
|
838 |
-
config.python_cmd
|
839 |
-
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s -li %s"
|
840 |
-
% (
|
841 |
-
exp_dir1,
|
842 |
-
sr2,
|
843 |
-
1 if if_f0_3 else 0,
|
844 |
-
batch_size12,
|
845 |
-
total_epoch11,
|
846 |
-
save_epoch10,
|
847 |
-
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "\b",
|
848 |
-
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "\b",
|
849 |
-
1 if if_save_latest13 == True else 0,
|
850 |
-
1 if if_cache_gpu17 == True else 0,
|
851 |
-
1 if if_save_every_weights18 == True else 0,
|
852 |
-
version19,
|
853 |
-
log_interval,
|
854 |
-
)
|
855 |
-
)
|
856 |
-
print(cmd)
|
857 |
-
p = Popen(cmd, shell=True, cwd=now_dir)
|
858 |
-
global PID
|
859 |
-
PID = p.pid
|
860 |
-
p.wait()
|
861 |
-
return ("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log", {"visible": False, "__type__": "update"}, {"visible": True, "__type__": "update"})
|
862 |
-
|
863 |
-
|
864 |
-
# but4.click(train_index, [exp_dir1], info3)
|
865 |
-
def train_index(exp_dir1, version19):
|
866 |
-
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
867 |
-
os.makedirs(exp_dir, exist_ok=True)
|
868 |
-
feature_dir = (
|
869 |
-
"%s/3_feature256" % (exp_dir)
|
870 |
-
if version19 == "v1"
|
871 |
-
else "%s/3_feature768" % (exp_dir)
|
872 |
-
)
|
873 |
-
if os.path.exists(feature_dir) == False:
|
874 |
-
return "请先进行特征提取!"
|
875 |
-
listdir_res = list(os.listdir(feature_dir))
|
876 |
-
if len(listdir_res) == 0:
|
877 |
-
return "请先进行特征提取!"
|
878 |
-
npys = []
|
879 |
-
for name in sorted(listdir_res):
|
880 |
-
phone = np.load("%s/%s" % (feature_dir, name))
|
881 |
-
npys.append(phone)
|
882 |
-
big_npy = np.concatenate(npys, 0)
|
883 |
-
big_npy_idx = np.arange(big_npy.shape[0])
|
884 |
-
np.random.shuffle(big_npy_idx)
|
885 |
-
big_npy = big_npy[big_npy_idx]
|
886 |
-
np.save("%s/total_fea.npy" % exp_dir, big_npy)
|
887 |
-
# n_ivf = big_npy.shape[0] // 39
|
888 |
-
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
889 |
-
infos = []
|
890 |
-
infos.append("%s,%s" % (big_npy.shape, n_ivf))
|
891 |
-
yield "\n".join(infos)
|
892 |
-
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
893 |
-
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
|
894 |
-
infos.append("training")
|
895 |
-
yield "\n".join(infos)
|
896 |
-
index_ivf = faiss.extract_index_ivf(index) #
|
897 |
-
index_ivf.nprobe = 1
|
898 |
-
index.train(big_npy)
|
899 |
-
faiss.write_index(
|
900 |
-
index,
|
901 |
-
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
902 |
-
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
903 |
-
)
|
904 |
-
# faiss.write_index(index, '%s/trained_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
|
905 |
-
infos.append("adding")
|
906 |
-
yield "\n".join(infos)
|
907 |
-
batch_size_add = 8192
|
908 |
-
for i in range(0, big_npy.shape[0], batch_size_add):
|
909 |
-
index.add(big_npy[i : i + batch_size_add])
|
910 |
-
faiss.write_index(
|
911 |
-
index,
|
912 |
-
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
913 |
-
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
914 |
-
)
|
915 |
-
infos.append(
|
916 |
-
"成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
917 |
-
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
|
918 |
-
)
|
919 |
-
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
|
920 |
-
# infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
|
921 |
-
yield "\n".join(infos)
|
922 |
-
|
923 |
|
924 |
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
|
925 |
-
def train1key(
|
926 |
-
exp_dir1,
|
927 |
-
sr2,
|
928 |
-
if_f0_3,
|
929 |
-
trainset_dir4,
|
930 |
-
spk_id5,
|
931 |
-
np7,
|
932 |
-
f0method8,
|
933 |
-
save_epoch10,
|
934 |
-
total_epoch11,
|
935 |
-
batch_size12,
|
936 |
-
if_save_latest13,
|
937 |
-
pretrained_G14,
|
938 |
-
pretrained_D15,
|
939 |
-
gpus16,
|
940 |
-
if_cache_gpu17,
|
941 |
-
if_save_every_weights18,
|
942 |
-
version19,
|
943 |
-
echl
|
944 |
-
):
|
945 |
-
infos = []
|
946 |
-
|
947 |
-
def get_info_str(strr):
|
948 |
-
infos.append(strr)
|
949 |
-
return "\n".join(infos)
|
950 |
-
|
951 |
-
model_log_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
952 |
-
preprocess_log_path = "%s/preprocess.log" % model_log_dir
|
953 |
-
extract_f0_feature_log_path = "%s/extract_f0_feature.log" % model_log_dir
|
954 |
-
gt_wavs_dir = "%s/0_gt_wavs" % model_log_dir
|
955 |
-
feature_dir = (
|
956 |
-
"%s/3_feature256" % model_log_dir
|
957 |
-
if version19 == "v1"
|
958 |
-
else "%s/3_feature768" % model_log_dir
|
959 |
-
)
|
960 |
|
961 |
-
os.makedirs(model_log_dir, exist_ok=True)
|
962 |
-
#########step1:处理数据
|
963 |
-
open(preprocess_log_path, "w").close()
|
964 |
-
cmd = (
|
965 |
-
config.python_cmd
|
966 |
-
+ " trainset_preprocess_pipeline_print.py %s %s %s %s "
|
967 |
-
% (trainset_dir4, sr_dict[sr2], np7, model_log_dir)
|
968 |
-
+ str(config.noparallel)
|
969 |
-
)
|
970 |
-
yield get_info_str(i18n("step1:正在处理数据"))
|
971 |
-
yield get_info_str(cmd)
|
972 |
-
p = Popen(cmd, shell=True)
|
973 |
-
p.wait()
|
974 |
-
with open(preprocess_log_path, "r") as f:
|
975 |
-
print(f.read())
|
976 |
-
#########step2a:提取音高
|
977 |
-
open(extract_f0_feature_log_path, "w")
|
978 |
-
if if_f0_3:
|
979 |
-
yield get_info_str("step2a:正在提取音高")
|
980 |
-
cmd = config.python_cmd + " extract_f0_print.py %s %s %s %s" % (
|
981 |
-
model_log_dir,
|
982 |
-
np7,
|
983 |
-
f0method8,
|
984 |
-
echl
|
985 |
-
)
|
986 |
-
yield get_info_str(cmd)
|
987 |
-
p = Popen(cmd, shell=True, cwd=now_dir)
|
988 |
-
p.wait()
|
989 |
-
with open(extract_f0_feature_log_path, "r") as f:
|
990 |
-
print(f.read())
|
991 |
-
else:
|
992 |
-
yield get_info_str(i18n("step2a:无需提取音高"))
|
993 |
-
#######step2b:提取特征
|
994 |
-
yield get_info_str(i18n("step2b:正在提取特征"))
|
995 |
-
gpus = gpus16.split("-")
|
996 |
-
leng = len(gpus)
|
997 |
-
ps = []
|
998 |
-
for idx, n_g in enumerate(gpus):
|
999 |
-
cmd = config.python_cmd + " extract_feature_print.py %s %s %s %s %s %s" % (
|
1000 |
-
config.device,
|
1001 |
-
leng,
|
1002 |
-
idx,
|
1003 |
-
n_g,
|
1004 |
-
model_log_dir,
|
1005 |
-
version19,
|
1006 |
-
)
|
1007 |
-
yield get_info_str(cmd)
|
1008 |
-
p = Popen(
|
1009 |
-
cmd, shell=True, cwd=now_dir
|
1010 |
-
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
1011 |
-
ps.append(p)
|
1012 |
-
for p in ps:
|
1013 |
-
p.wait()
|
1014 |
-
with open(extract_f0_feature_log_path, "r") as f:
|
1015 |
-
print(f.read())
|
1016 |
-
#######step3a:训练模型
|
1017 |
-
yield get_info_str(i18n("step3a:正在训练模型"))
|
1018 |
-
# 生成filelist
|
1019 |
-
if if_f0_3:
|
1020 |
-
f0_dir = "%s/2a_f0" % model_log_dir
|
1021 |
-
f0nsf_dir = "%s/2b-f0nsf" % model_log_dir
|
1022 |
-
names = (
|
1023 |
-
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
1024 |
-
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
1025 |
-
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
1026 |
-
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
1027 |
-
)
|
1028 |
-
else:
|
1029 |
-
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
1030 |
-
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
1031 |
-
)
|
1032 |
-
opt = []
|
1033 |
-
for name in names:
|
1034 |
-
if if_f0_3:
|
1035 |
-
opt.append(
|
1036 |
-
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
1037 |
-
% (
|
1038 |
-
gt_wavs_dir.replace("\\", "\\\\"),
|
1039 |
-
name,
|
1040 |
-
feature_dir.replace("\\", "\\\\"),
|
1041 |
-
name,
|
1042 |
-
f0_dir.replace("\\", "\\\\"),
|
1043 |
-
name,
|
1044 |
-
f0nsf_dir.replace("\\", "\\\\"),
|
1045 |
-
name,
|
1046 |
-
spk_id5,
|
1047 |
-
)
|
1048 |
-
)
|
1049 |
-
else:
|
1050 |
-
opt.append(
|
1051 |
-
"%s/%s.wav|%s/%s.npy|%s"
|
1052 |
-
% (
|
1053 |
-
gt_wavs_dir.replace("\\", "\\\\"),
|
1054 |
-
name,
|
1055 |
-
feature_dir.replace("\\", "\\\\"),
|
1056 |
-
name,
|
1057 |
-
spk_id5,
|
1058 |
-
)
|
1059 |
-
)
|
1060 |
-
fea_dim = 256 if version19 == "v1" else 768
|
1061 |
-
if if_f0_3:
|
1062 |
-
for _ in range(2):
|
1063 |
-
opt.append(
|
1064 |
-
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
1065 |
-
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
1066 |
-
)
|
1067 |
-
else:
|
1068 |
-
for _ in range(2):
|
1069 |
-
opt.append(
|
1070 |
-
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
1071 |
-
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
1072 |
-
)
|
1073 |
-
shuffle(opt)
|
1074 |
-
with open("%s/filelist.txt" % model_log_dir, "w") as f:
|
1075 |
-
f.write("\n".join(opt))
|
1076 |
-
yield get_info_str("write filelist done")
|
1077 |
-
if gpus16:
|
1078 |
-
cmd = (
|
1079 |
-
config.python_cmd
|
1080 |
-
+" train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s"
|
1081 |
-
% (
|
1082 |
-
exp_dir1,
|
1083 |
-
sr2,
|
1084 |
-
1 if if_f0_3 else 0,
|
1085 |
-
batch_size12,
|
1086 |
-
gpus16,
|
1087 |
-
total_epoch11,
|
1088 |
-
save_epoch10,
|
1089 |
-
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "",
|
1090 |
-
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "",
|
1091 |
-
1 if if_save_latest13 == True else 0,
|
1092 |
-
1 if if_cache_gpu17 == True else 0,
|
1093 |
-
1 if if_save_every_weights18 == True else 0,
|
1094 |
-
version19,
|
1095 |
-
)
|
1096 |
-
)
|
1097 |
-
else:
|
1098 |
-
cmd = (
|
1099 |
-
config.python_cmd
|
1100 |
-
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s"
|
1101 |
-
% (
|
1102 |
-
exp_dir1,
|
1103 |
-
sr2,
|
1104 |
-
1 if if_f0_3 else 0,
|
1105 |
-
batch_size12,
|
1106 |
-
total_epoch11,
|
1107 |
-
save_epoch10,
|
1108 |
-
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "",
|
1109 |
-
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "",
|
1110 |
-
1 if if_save_latest13 == True else 0,
|
1111 |
-
1 if if_cache_gpu17 == True else 0,
|
1112 |
-
1 if if_save_every_weights18 == True else 0,
|
1113 |
-
version19,
|
1114 |
-
)
|
1115 |
-
)
|
1116 |
-
yield get_info_str(cmd)
|
1117 |
-
p = Popen(cmd, shell=True, cwd=now_dir)
|
1118 |
-
p.wait()
|
1119 |
-
yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"))
|
1120 |
-
#######step3b:训练索引
|
1121 |
-
npys = []
|
1122 |
-
listdir_res = list(os.listdir(feature_dir))
|
1123 |
-
for name in sorted(listdir_res):
|
1124 |
-
phone = np.load("%s/%s" % (feature_dir, name))
|
1125 |
-
npys.append(phone)
|
1126 |
-
big_npy = np.concatenate(npys, 0)
|
1127 |
-
|
1128 |
-
big_npy_idx = np.arange(big_npy.shape[0])
|
1129 |
-
np.random.shuffle(big_npy_idx)
|
1130 |
-
big_npy = big_npy[big_npy_idx]
|
1131 |
-
np.save("%s/total_fea.npy" % model_log_dir, big_npy)
|
1132 |
-
|
1133 |
-
# n_ivf = big_npy.shape[0] // 39
|
1134 |
-
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
1135 |
-
yield get_info_str("%s,%s" % (big_npy.shape, n_ivf))
|
1136 |
-
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
1137 |
-
yield get_info_str("training index")
|
1138 |
-
index_ivf = faiss.extract_index_ivf(index) #
|
1139 |
-
index_ivf.nprobe = 1
|
1140 |
-
index.train(big_npy)
|
1141 |
-
faiss.write_index(
|
1142 |
-
index,
|
1143 |
-
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
1144 |
-
% (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
1145 |
-
)
|
1146 |
-
yield get_info_str("adding index")
|
1147 |
-
batch_size_add = 8192
|
1148 |
-
for i in range(0, big_npy.shape[0], batch_size_add):
|
1149 |
-
index.add(big_npy[i : i + batch_size_add])
|
1150 |
-
faiss.write_index(
|
1151 |
-
index,
|
1152 |
-
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
1153 |
-
% (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
1154 |
-
)
|
1155 |
-
yield get_info_str(
|
1156 |
-
"成功构建索引, added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
1157 |
-
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
|
1158 |
-
)
|
1159 |
-
yield get_info_str(i18n("全流程结束!"))
|
1160 |
|
1161 |
|
1162 |
def whethercrepeornah(radio):
|
@@ -1183,57 +576,6 @@ def change_info_(ckpt_path):
|
|
1183 |
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
1184 |
|
1185 |
|
1186 |
-
from lib.infer_pack.models_onnx import SynthesizerTrnMsNSFsidM
|
1187 |
-
|
1188 |
-
|
1189 |
-
def export_onnx(ModelPath, ExportedPath, MoeVS=True):
|
1190 |
-
cpt = torch.load(ModelPath, map_location="cpu")
|
1191 |
-
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
1192 |
-
hidden_channels = 256 if cpt.get("version","v1")=="v1"else 768#cpt["config"][-2] # hidden_channels,为768Vec做准备
|
1193 |
-
|
1194 |
-
test_phone = torch.rand(1, 200, hidden_channels) # hidden unit
|
1195 |
-
test_phone_lengths = torch.tensor([200]).long() # hidden unit 长度(貌似没啥用)
|
1196 |
-
test_pitch = torch.randint(size=(1, 200), low=5, high=255) # 基频(单位赫兹)
|
1197 |
-
test_pitchf = torch.rand(1, 200) # nsf基频
|
1198 |
-
test_ds = torch.LongTensor([0]) # 说话人ID
|
1199 |
-
test_rnd = torch.rand(1, 192, 200) # 噪声(加入随机因子)
|
1200 |
-
|
1201 |
-
device = "cpu" # 导出时设备(不影响使用模型)
|
1202 |
-
|
1203 |
-
|
1204 |
-
net_g = SynthesizerTrnMsNSFsidM(
|
1205 |
-
*cpt["config"], is_half=False,version=cpt.get("version","v1")
|
1206 |
-
) # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16)
|
1207 |
-
net_g.load_state_dict(cpt["weight"], strict=False)
|
1208 |
-
input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"]
|
1209 |
-
output_names = [
|
1210 |
-
"audio",
|
1211 |
-
]
|
1212 |
-
# net_g.construct_spkmixmap(n_speaker) 多角色混合轨道导出
|
1213 |
-
torch.onnx.export(
|
1214 |
-
net_g,
|
1215 |
-
(
|
1216 |
-
test_phone.to(device),
|
1217 |
-
test_phone_lengths.to(device),
|
1218 |
-
test_pitch.to(device),
|
1219 |
-
test_pitchf.to(device),
|
1220 |
-
test_ds.to(device),
|
1221 |
-
test_rnd.to(device),
|
1222 |
-
),
|
1223 |
-
ExportedPath,
|
1224 |
-
dynamic_axes={
|
1225 |
-
"phone": [1],
|
1226 |
-
"pitch": [1],
|
1227 |
-
"pitchf": [1],
|
1228 |
-
"rnd": [2],
|
1229 |
-
},
|
1230 |
-
do_constant_folding=False,
|
1231 |
-
opset_version=16,
|
1232 |
-
verbose=False,
|
1233 |
-
input_names=input_names,
|
1234 |
-
output_names=output_names,
|
1235 |
-
)
|
1236 |
-
return "Finished"
|
1237 |
|
1238 |
#region RVC WebUI App
|
1239 |
|
@@ -1706,123 +1048,7 @@ with gr.Blocks(theme=gr.themes.Base(), title='Mangio-RVC-Web 💻') as app:
|
|
1706 |
[vc_output1, vc_output2],
|
1707 |
)
|
1708 |
|
1709 |
-
|
1710 |
-
with gr.Row():
|
1711 |
-
with gr.Column():
|
1712 |
-
vc_transform1 = gr.Number(
|
1713 |
-
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
|
1714 |
-
)
|
1715 |
-
opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
|
1716 |
-
f0method1 = gr.Radio(
|
1717 |
-
label=i18n(
|
1718 |
-
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU"
|
1719 |
-
),
|
1720 |
-
choices=["pm", "harvest", "crepe", "rmvpe"],
|
1721 |
-
value="rmvpe",
|
1722 |
-
interactive=True,
|
1723 |
-
)
|
1724 |
-
filter_radius1 = gr.Slider(
|
1725 |
-
minimum=0,
|
1726 |
-
maximum=7,
|
1727 |
-
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
1728 |
-
value=3,
|
1729 |
-
step=1,
|
1730 |
-
interactive=True,
|
1731 |
-
)
|
1732 |
-
with gr.Column():
|
1733 |
-
file_index3 = gr.Textbox(
|
1734 |
-
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
1735 |
-
value="",
|
1736 |
-
interactive=True,
|
1737 |
-
)
|
1738 |
-
file_index4 = gr.Dropdown(
|
1739 |
-
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
1740 |
-
choices=sorted(index_paths),
|
1741 |
-
interactive=True,
|
1742 |
-
)
|
1743 |
-
refresh_button.click(
|
1744 |
-
fn=lambda: change_choices()[1],
|
1745 |
-
inputs=[],
|
1746 |
-
outputs=file_index4,
|
1747 |
-
)
|
1748 |
-
# file_big_npy2 = gr.Textbox(
|
1749 |
-
# label=i18n("特征文件路径"),
|
1750 |
-
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
1751 |
-
# interactive=True,
|
1752 |
-
# )
|
1753 |
-
index_rate2 = gr.Slider(
|
1754 |
-
minimum=0,
|
1755 |
-
maximum=1,
|
1756 |
-
label=i18n("检索特征占比"),
|
1757 |
-
value=1,
|
1758 |
-
interactive=True,
|
1759 |
-
)
|
1760 |
-
with gr.Column():
|
1761 |
-
resample_sr1 = gr.Slider(
|
1762 |
-
minimum=0,
|
1763 |
-
maximum=48000,
|
1764 |
-
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
1765 |
-
value=0,
|
1766 |
-
step=1,
|
1767 |
-
interactive=True,
|
1768 |
-
)
|
1769 |
-
rms_mix_rate1 = gr.Slider(
|
1770 |
-
minimum=0,
|
1771 |
-
maximum=1,
|
1772 |
-
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
1773 |
-
value=1,
|
1774 |
-
interactive=True,
|
1775 |
-
)
|
1776 |
-
protect1 = gr.Slider(
|
1777 |
-
minimum=0,
|
1778 |
-
maximum=0.5,
|
1779 |
-
label=i18n(
|
1780 |
-
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
1781 |
-
),
|
1782 |
-
value=0.33,
|
1783 |
-
step=0.01,
|
1784 |
-
interactive=True,
|
1785 |
-
)
|
1786 |
-
with gr.Column():
|
1787 |
-
dir_input = gr.Textbox(
|
1788 |
-
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
|
1789 |
-
value="E:\codes\py39\\test-20230416b\\todo-songs",
|
1790 |
-
)
|
1791 |
-
inputs = gr.File(
|
1792 |
-
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
|
1793 |
-
)
|
1794 |
-
with gr.Row():
|
1795 |
-
format1 = gr.Radio(
|
1796 |
-
label=i18n("导出文件格式"),
|
1797 |
-
choices=["wav", "flac", "mp3", "m4a"],
|
1798 |
-
value="flac",
|
1799 |
-
interactive=True,
|
1800 |
-
)
|
1801 |
-
but1 = gr.Button(i18n("转换"), variant="primary")
|
1802 |
-
vc_output3 = gr.Textbox(label=i18n("输出信息"))
|
1803 |
-
but1.click(
|
1804 |
-
vc_multi,
|
1805 |
-
[
|
1806 |
-
spk_item,
|
1807 |
-
dir_input,
|
1808 |
-
opt_input,
|
1809 |
-
inputs,
|
1810 |
-
vc_transform1,
|
1811 |
-
f0method1,
|
1812 |
-
file_index3,
|
1813 |
-
file_index4,
|
1814 |
-
# file_big_npy2,
|
1815 |
-
index_rate2,
|
1816 |
-
filter_radius1,
|
1817 |
-
resample_sr1,
|
1818 |
-
rms_mix_rate1,
|
1819 |
-
protect1,
|
1820 |
-
format1,
|
1821 |
-
crepe_hop_length,
|
1822 |
-
],
|
1823 |
-
[vc_output3],
|
1824 |
-
)
|
1825 |
-
but1.click(fn=lambda: easy_uploader.clear())
|
1826 |
with gr.TabItem("Download Model"):
|
1827 |
with gr.Row():
|
1828 |
url=gr.Textbox(label="Enter the URL to the Model:")
|
@@ -1839,252 +1065,8 @@ with gr.Blocks(theme=gr.themes.Base(), title='Mangio-RVC-Web 💻') as app:
|
|
1839 |
"""
|
1840 |
)
|
1841 |
|
1842 |
-
|
1843 |
-
|
1844 |
-
if not os.path.exists(pretrained_folder):
|
1845 |
-
return False
|
1846 |
-
|
1847 |
-
files_in_folder = os.listdir(pretrained_folder)
|
1848 |
-
num_files = len(files_in_folder)
|
1849 |
-
return num_files >= 2
|
1850 |
-
|
1851 |
-
if has_two_files_in_pretrained_folder():
|
1852 |
-
print("Pretrained weights are downloaded. Training tab enabled!\n-------------------------------")
|
1853 |
-
with gr.TabItem("Train", visible=False):
|
1854 |
-
with gr.Row():
|
1855 |
-
with gr.Column():
|
1856 |
-
exp_dir1 = gr.Textbox(label="Voice Name:", value="My-Voice")
|
1857 |
-
sr2 = gr.Radio(
|
1858 |
-
label=i18n("目标采样率"),
|
1859 |
-
choices=["40k", "48k"],
|
1860 |
-
value="40k",
|
1861 |
-
interactive=True,
|
1862 |
-
visible=False
|
1863 |
-
)
|
1864 |
-
if_f0_3 = gr.Radio(
|
1865 |
-
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
|
1866 |
-
choices=[True, False],
|
1867 |
-
value=True,
|
1868 |
-
interactive=True,
|
1869 |
-
visible=False
|
1870 |
-
)
|
1871 |
-
version19 = gr.Radio(
|
1872 |
-
label="RVC version",
|
1873 |
-
choices=["v1", "v2"],
|
1874 |
-
value="v2",
|
1875 |
-
interactive=True,
|
1876 |
-
visible=False,
|
1877 |
-
)
|
1878 |
-
np7 = gr.Slider(
|
1879 |
-
minimum=0,
|
1880 |
-
maximum=config.n_cpu,
|
1881 |
-
step=1,
|
1882 |
-
label="# of CPUs for data processing (Leave as it is)",
|
1883 |
-
value=config.n_cpu,
|
1884 |
-
interactive=True,
|
1885 |
-
visible=True
|
1886 |
-
)
|
1887 |
-
trainset_dir4 = gr.Textbox(label="Path to your dataset (audios, not zip):", value="./dataset")
|
1888 |
-
easy_uploader = gr.Files(label='OR Drop your audios here. They will be uploaded in your dataset path above.',file_types=['audio'])
|
1889 |
-
but1 = gr.Button("1. Process The Dataset", variant="primary")
|
1890 |
-
info1 = gr.Textbox(label="Status (wait until it says 'end preprocess'):", value="")
|
1891 |
-
easy_uploader.upload(fn=upload_to_dataset, inputs=[easy_uploader, trainset_dir4], outputs=[info1])
|
1892 |
-
but1.click(
|
1893 |
-
preprocess_dataset, [trainset_dir4, exp_dir1, sr2, np7], [info1]
|
1894 |
-
)
|
1895 |
-
with gr.Column():
|
1896 |
-
spk_id5 = gr.Slider(
|
1897 |
-
minimum=0,
|
1898 |
-
maximum=4,
|
1899 |
-
step=1,
|
1900 |
-
label=i18n("请指定说话人id"),
|
1901 |
-
value=0,
|
1902 |
-
interactive=True,
|
1903 |
-
visible=False
|
1904 |
-
)
|
1905 |
-
with gr.Accordion('GPU Settings', open=False, visible=False):
|
1906 |
-
gpus6 = gr.Textbox(
|
1907 |
-
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
1908 |
-
value=gpus,
|
1909 |
-
interactive=True,
|
1910 |
-
visible=False
|
1911 |
-
)
|
1912 |
-
gpu_info9 = gr.Textbox(label=i18n("显卡信息"), value=gpu_info)
|
1913 |
-
f0method8 = gr.Radio(
|
1914 |
-
label=i18n(
|
1915 |
-
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢"
|
1916 |
-
),
|
1917 |
-
choices=["harvest","crepe", "mangio-crepe", "rmvpe"], # Fork feature: Crepe on f0 extraction for training.
|
1918 |
-
value="rmvpe",
|
1919 |
-
interactive=True,
|
1920 |
-
)
|
1921 |
-
|
1922 |
-
extraction_crepe_hop_length = gr.Slider(
|
1923 |
-
minimum=1,
|
1924 |
-
maximum=512,
|
1925 |
-
step=1,
|
1926 |
-
label=i18n("crepe_hop_length"),
|
1927 |
-
value=128,
|
1928 |
-
interactive=True,
|
1929 |
-
visible=False,
|
1930 |
-
)
|
1931 |
-
f0method8.change(fn=whethercrepeornah, inputs=[f0method8], outputs=[extraction_crepe_hop_length])
|
1932 |
-
but2 = gr.Button("2. Pitch Extraction", variant="primary")
|
1933 |
-
info2 = gr.Textbox(label="Status(Check the Colab Notebook's cell output):", value="", max_lines=8)
|
1934 |
-
but2.click(
|
1935 |
-
extract_f0_feature,
|
1936 |
-
[gpus6, np7, f0method8, if_f0_3, exp_dir1, version19, extraction_crepe_hop_length],
|
1937 |
-
[info2],
|
1938 |
-
)
|
1939 |
-
with gr.Row():
|
1940 |
-
with gr.Column():
|
1941 |
-
total_epoch11 = gr.Slider(
|
1942 |
-
minimum=1,
|
1943 |
-
maximum=5000,
|
1944 |
-
step=10,
|
1945 |
-
label="Total # of training epochs (IF you choose a value too high, your model will sound horribly overtrained.):",
|
1946 |
-
value=250,
|
1947 |
-
interactive=True,
|
1948 |
-
)
|
1949 |
-
butstop = gr.Button(
|
1950 |
-
"Stop Training",
|
1951 |
-
variant='primary',
|
1952 |
-
visible=False,
|
1953 |
-
)
|
1954 |
-
but3 = gr.Button("3. Train Model", variant="primary", visible=True)
|
1955 |
-
|
1956 |
-
but3.click(fn=stoptraining, inputs=[gr.Number(value=0, visible=False)], outputs=[but3, butstop])
|
1957 |
-
butstop.click(fn=stoptraining, inputs=[gr.Number(value=1, visible=False)], outputs=[butstop, but3])
|
1958 |
-
|
1959 |
-
|
1960 |
-
but4 = gr.Button("4.Train Index", variant="primary")
|
1961 |
-
info3 = gr.Textbox(label="Status(Check the Colab Notebook's cell output):", value="", max_lines=10)
|
1962 |
-
with gr.Accordion("Training Preferences (You can leave these as they are)", open=False):
|
1963 |
-
#gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引"))
|
1964 |
-
with gr.Column():
|
1965 |
-
save_epoch10 = gr.Slider(
|
1966 |
-
minimum=1,
|
1967 |
-
maximum=200,
|
1968 |
-
step=1,
|
1969 |
-
label="Backup every X amount of epochs:",
|
1970 |
-
value=10,
|
1971 |
-
interactive=True,
|
1972 |
-
)
|
1973 |
-
batch_size12 = gr.Slider(
|
1974 |
-
minimum=1,
|
1975 |
-
maximum=40,
|
1976 |
-
step=1,
|
1977 |
-
label="Batch Size (LEAVE IT unless you know what you're doing!):",
|
1978 |
-
value=default_batch_size,
|
1979 |
-
interactive=True,
|
1980 |
-
)
|
1981 |
-
if_save_latest13 = gr.Checkbox(
|
1982 |
-
label="Save only the latest '.ckpt' file to save disk space.",
|
1983 |
-
value=True,
|
1984 |
-
interactive=True,
|
1985 |
-
)
|
1986 |
-
if_cache_gpu17 = gr.Checkbox(
|
1987 |
-
label="Cache all training sets to GPU memory. Caching small datasets (less than 10 minutes) can speed up training, but caching large datasets will consume a lot of GPU memory and may not provide much speed improvement.",
|
1988 |
-
value=False,
|
1989 |
-
interactive=True,
|
1990 |
-
)
|
1991 |
-
if_save_every_weights18 = gr.Checkbox(
|
1992 |
-
label="Save a small final model to the 'weights' folder at each save point.",
|
1993 |
-
value=True,
|
1994 |
-
interactive=True,
|
1995 |
-
)
|
1996 |
-
zip_model = gr.Button('5. Download Model')
|
1997 |
-
zipped_model = gr.Files(label='Your Model and Index file can be downloaded here:')
|
1998 |
-
zip_model.click(fn=zip_downloader, inputs=[exp_dir1], outputs=[zipped_model, info3])
|
1999 |
-
with gr.Group():
|
2000 |
-
with gr.Accordion("Base Model Locations:", open=False, visible=False):
|
2001 |
-
pretrained_G14 = gr.Textbox(
|
2002 |
-
label=i18n("加载预训练底模G路径"),
|
2003 |
-
value="pretrained_v2/f0G40k.pth",
|
2004 |
-
interactive=True,
|
2005 |
-
)
|
2006 |
-
pretrained_D15 = gr.Textbox(
|
2007 |
-
label=i18n("加载预训练底模D路径"),
|
2008 |
-
value="pretrained_v2/f0D40k.pth",
|
2009 |
-
interactive=True,
|
2010 |
-
)
|
2011 |
-
gpus16 = gr.Textbox(
|
2012 |
-
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
2013 |
-
value=gpus,
|
2014 |
-
interactive=True,
|
2015 |
-
)
|
2016 |
-
sr2.change(
|
2017 |
-
change_sr2,
|
2018 |
-
[sr2, if_f0_3, version19],
|
2019 |
-
[pretrained_G14, pretrained_D15, version19],
|
2020 |
-
)
|
2021 |
-
version19.change(
|
2022 |
-
change_version19,
|
2023 |
-
[sr2, if_f0_3, version19],
|
2024 |
-
[pretrained_G14, pretrained_D15],
|
2025 |
-
)
|
2026 |
-
if_f0_3.change(
|
2027 |
-
change_f0,
|
2028 |
-
[if_f0_3, sr2, version19],
|
2029 |
-
[f0method8, pretrained_G14, pretrained_D15],
|
2030 |
-
)
|
2031 |
-
but5 = gr.Button(i18n("一键训练"), variant="primary", visible=False)
|
2032 |
-
but3.click(
|
2033 |
-
click_train,
|
2034 |
-
[
|
2035 |
-
exp_dir1,
|
2036 |
-
sr2,
|
2037 |
-
if_f0_3,
|
2038 |
-
spk_id5,
|
2039 |
-
save_epoch10,
|
2040 |
-
total_epoch11,
|
2041 |
-
batch_size12,
|
2042 |
-
if_save_latest13,
|
2043 |
-
pretrained_G14,
|
2044 |
-
pretrained_D15,
|
2045 |
-
gpus16,
|
2046 |
-
if_cache_gpu17,
|
2047 |
-
if_save_every_weights18,
|
2048 |
-
version19,
|
2049 |
-
],
|
2050 |
-
[
|
2051 |
-
info3,
|
2052 |
-
butstop,
|
2053 |
-
but3,
|
2054 |
-
],
|
2055 |
-
)
|
2056 |
-
but4.click(train_index, [exp_dir1, version19], info3)
|
2057 |
-
but5.click(
|
2058 |
-
train1key,
|
2059 |
-
[
|
2060 |
-
exp_dir1,
|
2061 |
-
sr2,
|
2062 |
-
if_f0_3,
|
2063 |
-
trainset_dir4,
|
2064 |
-
spk_id5,
|
2065 |
-
np7,
|
2066 |
-
f0method8,
|
2067 |
-
save_epoch10,
|
2068 |
-
total_epoch11,
|
2069 |
-
batch_size12,
|
2070 |
-
if_save_latest13,
|
2071 |
-
pretrained_G14,
|
2072 |
-
pretrained_D15,
|
2073 |
-
gpus16,
|
2074 |
-
if_cache_gpu17,
|
2075 |
-
if_save_every_weights18,
|
2076 |
-
version19,
|
2077 |
-
extraction_crepe_hop_length
|
2078 |
-
],
|
2079 |
-
info3,
|
2080 |
-
)
|
2081 |
-
|
2082 |
-
else:
|
2083 |
-
print(
|
2084 |
-
"Pretrained weights not downloaded. Disabling training tab.\n"
|
2085 |
-
"Wondering how to train a voice? Visit here for the RVC model training guide: https://t.ly/RVC_Training_Guide\n"
|
2086 |
-
"-------------------------------\n"
|
2087 |
-
)
|
2088 |
|
2089 |
app.queue(concurrency_count=511, max_size=1022).launch(share=False, quiet=True)
|
2090 |
#endregion
|
|
|
529 |
done[0] = True
|
530 |
|
531 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
532 |
|
533 |
global log_interval
|
534 |
|
|
|
547 |
log_interval += 1
|
548 |
return log_interval
|
549 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
550 |
|
551 |
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
552 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
553 |
|
554 |
|
555 |
def whethercrepeornah(radio):
|
|
|
576 |
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
577 |
|
578 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
579 |
|
580 |
#region RVC WebUI App
|
581 |
|
|
|
1048 |
[vc_output1, vc_output2],
|
1049 |
)
|
1050 |
|
1051 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1052 |
with gr.TabItem("Download Model"):
|
1053 |
with gr.Row():
|
1054 |
url=gr.Textbox(label="Enter the URL to the Model:")
|
|
|
1065 |
"""
|
1066 |
)
|
1067 |
|
1068 |
+
|
1069 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1070 |
|
1071 |
app.queue(concurrency_count=511, max_size=1022).launch(share=False, quiet=True)
|
1072 |
#endregion
|