Spaces:
Sleeping
Sleeping
Nearly fixed streaming bug
Browse files
app.py
CHANGED
@@ -17,7 +17,7 @@ asr_model.decoder.freeze()
|
|
17 |
|
18 |
|
19 |
total_buffer = asr_model.cfg["sample_rate"]
|
20 |
-
overhead_len = asr_model.cfg["sample_rate"] //
|
21 |
model_stride = 4
|
22 |
|
23 |
|
@@ -29,16 +29,20 @@ def resample(sr, audio_data):
|
|
29 |
return audio_16k
|
30 |
|
31 |
|
32 |
-
def model(audio_16k):
|
33 |
logits, logits_len, greedy_predictions = asr_model.forward(
|
34 |
input_signal=torch.tensor([audio_16k]),
|
35 |
input_signal_length=torch.tensor([len(audio_16k)])
|
36 |
)
|
37 |
|
38 |
# cut overhead
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
return logits
|
43 |
|
44 |
|
@@ -54,6 +58,7 @@ def decode_predictions(logits):
|
|
54 |
def transcribe(audio, state):
|
55 |
if state is None:
|
56 |
state = [np.array([], dtype=np.float32), None]
|
|
|
57 |
|
58 |
sr, audio_data = audio
|
59 |
audio_16k = resample(sr, audio_data)
|
@@ -61,20 +66,22 @@ def transcribe(audio, state):
|
|
61 |
# join to audio sequence
|
62 |
state[0] = np.concatenate([state[0], audio_16k])
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
buffer = state[0][:buffer_len]
|
68 |
-
state[0] = state[0][buffer_len - overhead_len:]
|
69 |
# run model
|
70 |
-
|
|
|
71 |
# add logits
|
72 |
-
if
|
73 |
state[1] = logits
|
74 |
else:
|
75 |
state[1] = torch.cat([state[1],logits], axis=1)
|
76 |
|
77 |
-
|
|
|
|
|
|
|
78 |
return text, state
|
79 |
|
80 |
|
|
|
17 |
|
18 |
|
19 |
total_buffer = asr_model.cfg["sample_rate"]
|
20 |
+
overhead_len = asr_model.cfg["sample_rate"] // 2
|
21 |
model_stride = 4
|
22 |
|
23 |
|
|
|
29 |
return audio_16k
|
30 |
|
31 |
|
32 |
+
def model(audio_16k, is_start):
|
33 |
logits, logits_len, greedy_predictions = asr_model.forward(
|
34 |
input_signal=torch.tensor([audio_16k]),
|
35 |
input_signal_length=torch.tensor([len(audio_16k)])
|
36 |
)
|
37 |
|
38 |
# cut overhead
|
39 |
+
buffer_len = len(audio_16k)
|
40 |
+
logits_overhead = (logits.shape[1] - 1) * overhead_len // buffer_len
|
41 |
+
logits_overhead //= 2
|
42 |
+
delay = (logits.shape[1] - 1) - (2 * logits_overhead)
|
43 |
+
start_cut = 0 if is_start else logits_overhead
|
44 |
+
delay += 0 if not is_start else logits_overhead
|
45 |
+
logits = logits[:, start_cut:start_cut+delay]
|
46 |
return logits
|
47 |
|
48 |
|
|
|
58 |
def transcribe(audio, state):
|
59 |
if state is None:
|
60 |
state = [np.array([], dtype=np.float32), None]
|
61 |
+
is_start = state[1] is None
|
62 |
|
63 |
sr, audio_data = audio
|
64 |
audio_16k = resample(sr, audio_data)
|
|
|
66 |
# join to audio sequence
|
67 |
state[0] = np.concatenate([state[0], audio_16k])
|
68 |
|
69 |
+
while (len(state[0]) > total_buffer):
|
70 |
+
buffer = state[0][:total_buffer]
|
71 |
+
state[0] = state[0][total_buffer - overhead_len:]
|
|
|
|
|
72 |
# run model
|
73 |
+
is_start = state[1] is None
|
74 |
+
logits = model(buffer, is_start)
|
75 |
# add logits
|
76 |
+
if is_start:
|
77 |
state[1] = logits
|
78 |
else:
|
79 |
state[1] = torch.cat([state[1],logits], axis=1)
|
80 |
|
81 |
+
if is_start:
|
82 |
+
text = ""
|
83 |
+
else:
|
84 |
+
text = decode_predictions(state[1])
|
85 |
return text, state
|
86 |
|
87 |
|