File size: 18,503 Bytes
b6ff5af
637c678
b6ff5af
c684cf6
ed7d0fe
c684cf6
 
 
 
 
 
 
 
 
 
 
 
 
b39c073
c684cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6ff5af
c684cf6
 
 
 
 
b6ff5af
c684cf6
 
 
 
b6ff5af
c684cf6
 
 
 
 
 
 
b6ff5af
c684cf6
 
 
b6ff5af
c684cf6
 
 
b6ff5af
c684cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6ff5af
c684cf6
 
 
8bdf8d9
c684cf6
 
8bdf8d9
c684cf6
 
8bdf8d9
c684cf6
 
 
 
 
8bdf8d9
c684cf6
 
 
 
8bdf8d9
c684cf6
 
8bdf8d9
c684cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bdf8d9
c684cf6
 
8bdf8d9
c684cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b39c073
c684cf6
 
 
 
 
 
 
 
 
b39c073
c684cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6ff5af
c684cf6
46b3885
c684cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6ff5af
 
c684cf6
 
 
 
 
8bdf8d9
c684cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6ff5af
c684cf6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import gradio as gr
import spaces
import torch
import torchaudio
import io
import base64
import uuid
import os
import time
import re
import threading
import gc
import random
import numpy as np
from einops import rearrange
from huggingface_hub import login
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
from gradio_client import Client
from contextlib import contextmanager

# Global model storage
model_cache = {}
model_lock = threading.Lock()

@contextmanager
def resource_cleanup():
    """Context manager to ensure proper cleanup of GPU resources."""
    try:
        yield
    finally:
        if torch.cuda.is_available():
            torch.cuda.synchronize()
            torch.cuda.empty_cache()
        gc.collect()

def load_stable_audio_model():
    """Load stable-audio-open-small model if not already loaded."""
    with model_lock:
        if 'stable_audio_model' not in model_cache:
            print("πŸ”„ Loading stable-audio-open-small model...")
            
            # Authenticate with HF
            hf_token = os.getenv('HF_TOKEN')
            if hf_token:
                login(token=hf_token)
                print(f"βœ… HF authenticated")
            
            # Load model
            model, config = get_pretrained_model("stabilityai/stable-audio-open-small")
            device = "cuda" if torch.cuda.is_available() else "cpu"
            model = model.to(device)
            if device == "cuda":
                model = model.half()
            
            model_cache['stable_audio_model'] = model
            model_cache['stable_audio_config'] = config
            model_cache['stable_audio_device'] = device
            print(f"βœ… Stable Audio model loaded on {device}")
        
        return (model_cache['stable_audio_model'], 
                model_cache['stable_audio_config'], 
                model_cache['stable_audio_device'])

@spaces.GPU
def generate_stable_audio_loop(prompt, loop_type, bpm, bars, seed=-1):
    """Generate a BPM-aware loop using stable-audio-open-small"""
    try:
        model, config, device = load_stable_audio_model()
        
        # Calculate loop duration based on BPM and bars
        seconds_per_beat = 60.0 / bpm
        seconds_per_bar = seconds_per_beat * 4  # 4/4 time
        target_loop_duration = seconds_per_bar * bars
        
        # Enhance prompt based on loop type and BPM
        if loop_type == "drums":
            enhanced_prompt = f"{prompt} drum loop {bpm}bpm"
            negative_prompt = "melody, harmony, pitched instruments, vocals, singing"
        else:  # instruments
            enhanced_prompt = f"{prompt} instrumental loop {bpm}bpm"
            negative_prompt = "drums, percussion, kick, snare, hi-hat"
        
        # Set seed
        if seed == -1:
            seed = random.randint(0, 2**32 - 1)
        
        torch.manual_seed(seed)
        if device == "cuda":
            torch.cuda.manual_seed(seed)
        
        print(f"🎡 Generating {loop_type} loop:")
        print(f"   Enhanced prompt: {enhanced_prompt}")
        print(f"   Target duration: {target_loop_duration:.2f}s ({bars} bars at {bpm}bpm)")
        print(f"   Seed: {seed}")
        
        # Prepare conditioning
        conditioning = [{
            "prompt": enhanced_prompt,
            "seconds_total": 12  # Model generates 12s max
        }]
        
        negative_conditioning = [{
            "prompt": negative_prompt,
            "seconds_total": 12
        }]
        
        start_time = time.time()
        
        with resource_cleanup():
            if device == "cuda":
                torch.cuda.empty_cache()
            
            with torch.cuda.amp.autocast(enabled=(device == "cuda")):
                output = generate_diffusion_cond(
                    model,
                    steps=8,  # Fast generation
                    cfg_scale=1.0,  # Good balance for loops
                    conditioning=conditioning,
                    negative_conditioning=negative_conditioning,
                    sample_size=config["sample_size"],
                    sampler_type="pingpong",
                    device=device,
                    seed=seed
                )
            
            generation_time = time.time() - start_time
            
            # Post-process audio
            output = rearrange(output, "b d n -> d (b n)")  # (2, N) stereo
            output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1)
            
            # Extract the loop portion
            sample_rate = config["sample_rate"]
            loop_samples = int(target_loop_duration * sample_rate)
            available_samples = output.shape[1]
            
            if loop_samples > available_samples:
                loop_samples = available_samples
                actual_duration = available_samples / sample_rate
                print(f"⚠️ Requested {target_loop_duration:.2f}s, got {actual_duration:.2f}s")
            
            # Extract loop from beginning (cleanest beat alignment)
            loop_output = output[:, :loop_samples]
            loop_output_int16 = loop_output.mul(32767).to(torch.int16).cpu()
            
            # Save to temporary file
            loop_filename = f"loop_{loop_type}_{bpm}bpm_{bars}bars_{seed}.wav"
            torchaudio.save(loop_filename, loop_output_int16, sample_rate)
            
            actual_duration = loop_samples / sample_rate
            print(f"βœ… {loop_type.title()} loop generated: {actual_duration:.2f}s in {generation_time:.2f}s")
            
            return loop_filename, f"Generated {actual_duration:.2f}s {loop_type} loop at {bpm}bpm ({bars} bars)"
    
    except Exception as e:
        print(f"❌ Generation error: {str(e)}")
        return None, f"Error: {str(e)}"

def combine_loops(drums_audio, instruments_audio, bpm, bars, num_repeats):
    """Combine drum and instrument loops with specified repetitions"""
    try:
        if not drums_audio and not instruments_audio:
            return None, "No audio files to combine"
        
        # Calculate timing
        seconds_per_beat = 60.0 / bpm
        seconds_per_bar = seconds_per_beat * 4
        loop_duration = seconds_per_bar * bars
        total_duration = loop_duration * num_repeats
        
        print(f"πŸŽ›οΈ Combining loops:")
        print(f"   Loop duration: {loop_duration:.2f}s ({bars} bars)")
        print(f"   Repeats: {num_repeats}")
        print(f"   Total duration: {total_duration:.2f}s")
        
        combined_audio = None
        sample_rate = None
        
        # Process each audio file
        for audio_path, audio_type in [(drums_audio, "drums"), (instruments_audio, "instruments")]:
            if audio_path:
                # Load audio
                waveform, sr = torchaudio.load(audio_path)
                if sample_rate is None:
                    sample_rate = sr
                
                # Ensure we have the exact loop duration
                target_samples = int(loop_duration * sr)
                if waveform.shape[1] > target_samples:
                    waveform = waveform[:, :target_samples]
                elif waveform.shape[1] < target_samples:
                    # Pad if necessary
                    padding = target_samples - waveform.shape[1]
                    waveform = torch.cat([waveform, torch.zeros(waveform.shape[0], padding)], dim=1)
                
                # Repeat the loop
                repeated_waveform = waveform.repeat(1, num_repeats)
                
                print(f"   {audio_type}: {waveform.shape[1]/sr:.2f}s repeated {num_repeats}x = {repeated_waveform.shape[1]/sr:.2f}s")
                
                # Add to combined audio
                if combined_audio is None:
                    combined_audio = repeated_waveform
                else:
                    combined_audio = combined_audio + repeated_waveform
        
        if combined_audio is None:
            return None, "No valid audio to combine"
        
        # Normalize to prevent clipping
        combined_audio = combined_audio / torch.max(torch.abs(combined_audio))
        combined_audio = combined_audio.clamp(-1, 1)
        
        # Convert to int16 and save
        combined_audio_int16 = combined_audio.mul(32767).to(torch.int16)
        combined_filename = f"combined_{bpm}bpm_{bars}bars_{num_repeats}loops_{random.randint(1000, 9999)}.wav"
        torchaudio.save(combined_filename, combined_audio_int16, sample_rate)
        
        actual_duration = combined_audio.shape[1] / sample_rate
        status = f"Combined into {actual_duration:.2f}s audio ({num_repeats} Γ— {bars} bars at {bpm}bpm)"
        
        print(f"βœ… {status}")
        return combined_filename, status
    
    except Exception as e:
        print(f"❌ Combine error: {str(e)}")
        return None, f"Combine error: {str(e)}"

def transform_with_melodyflow_api(audio_path, prompt, solver="euler", flowstep=0.12):
    """Transform audio using Facebook/MelodyFlow space API"""
    if audio_path is None:
        return None, "❌ No audio file provided"
    
    try:
        # Initialize client for Facebook MelodyFlow space
        client = Client("facebook/MelodyFlow")
        
        # Set steps based on solver
        if solver == "midpoint":
            base_steps = 128
            effective_steps = base_steps // 2  # 64 effective steps
        else:  # euler
            base_steps = 125  
            effective_steps = base_steps // 5  # 25 effective steps
        
        print(f"πŸŽ›οΈ MelodyFlow transformation:")
        print(f"   Prompt: {prompt}")
        print(f"   Solver: {solver} ({effective_steps} effective steps)")
        print(f"   Flowstep: {flowstep}")
        
        # Call the MelodyFlow API - pass file path directly
        result = client.predict(
            model="facebook/melodyflow-t24-30secs",
            text=prompt,
            solver=solver,
            steps=base_steps,
            target_flowstep=flowstep,
            regularize=solver == "euler",
            regularization_strength=0.2,
            duration=30,
            melody=audio_path,  # Pass file path directly instead of handle_file(audio_path)
            api_name="/predict"
        )
        
        if result and len(result) > 0 and result[0]:
            # Save the result locally
            output_filename = f"melodyflow_transformed_{random.randint(1000, 9999)}.wav"
            import shutil
            shutil.copy2(result[0], output_filename)
            
            status_msg = f"βœ… Transformed with prompt: '{prompt}' (flowstep: {flowstep}, {effective_steps} steps)"
            return output_filename, status_msg
        else:
            return None, "❌ MelodyFlow API returned no results"
            
    except Exception as e:
        return None, f"❌ MelodyFlow API error: {str(e)}"

def calculate_optimal_bars(bpm):
    """Calculate optimal bar count for given BPM to fit in ~10s"""
    seconds_per_beat = 60.0 / bpm
    seconds_per_bar = seconds_per_beat * 4
    max_duration = 10.0
    
    for bars in [8, 4, 2, 1]:
        if seconds_per_bar * bars <= max_duration:
            return bars
    return 1

# ========== GRADIO INTERFACE ==========

with gr.Blocks(title="🎡 Stable Audio Loop Generator") as iface:
    gr.Markdown("# 🎡 Stable Audio Loop Generator")
    gr.Markdown("**Generate synchronized drum and instrument loops with stable-audio-open-small, then transform with MelodyFlow!**")
    
    with gr.Accordion("How This Works", open=False):
        gr.Markdown("""

        **Workflow:**

        1. **Set global BPM and bars** - affects both drum and instrument generation

        2. **Generate drum loop** - creates BPM-aware percussion

        3. **Generate instrument loop** - creates melodic/harmonic content  

        4. **Combine loops** - layer them together with repetitions (up to 30s)

        5. **Transform** - use MelodyFlow to stylistically transform the combined result

        

        **Features:**

        - BPM-aware generation ensures perfect sync between loops

        - Negative prompting separates drums from instruments cleanly

        - Smart bar calculation optimizes loop length for the BPM

        - MelodyFlow integration for advanced style transfer

        """)
    
    # ========== GLOBAL CONTROLS ==========
    gr.Markdown("## πŸŽ›οΈ Global Settings")
    
    with gr.Row():
        global_bpm = gr.Dropdown(
            label="Global BPM",
            choices=[90, 100, 110, 120, 130, 140, 150],
            value=120,
            info="BPM applied to both drum and instrument generation"
        )
        
        global_bars = gr.Dropdown(
            label="Loop Length (Bars)",
            choices=[1, 2, 4, 8],
            value=4,
            info="Number of bars for each loop"
        )
        
        base_prompt = gr.Textbox(
            label="Base Prompt",
            value="techno",
            placeholder="e.g., 'techno', 'jazz', 'ambient', 'hip-hop'",
            info="Style applied to both loops"
        )
    
    # Auto-suggest optimal bars based on BPM
    def update_suggested_bars(bpm):
        optimal = calculate_optimal_bars(bpm)
        return gr.update(info=f"Suggested: {optimal} bars for {bpm}bpm (≀10s)")
    
    global_bpm.change(update_suggested_bars, inputs=[global_bpm], outputs=[global_bars])
    
    # ========== LOOP GENERATION ==========
    gr.Markdown("## πŸ₯ Step 1: Generate Individual Loops")
    
    with gr.Row():
        with gr.Column():
            gr.Markdown("### πŸ₯ Drum Loop")
            generate_drums_btn = gr.Button("Generate Drums", variant="primary", size="lg")
            drums_audio = gr.Audio(label="Drum Loop", type="filepath")
            drums_status = gr.Textbox(label="Drums Status", value="Ready to generate")
            
        with gr.Column():
            gr.Markdown("### 🎹 Instrument Loop")
            generate_instruments_btn = gr.Button("Generate Instruments", variant="secondary", size="lg")
            instruments_audio = gr.Audio(label="Instrument Loop", type="filepath")
            instruments_status = gr.Textbox(label="Instruments Status", value="Ready to generate")
    
    # Seed controls
    with gr.Row():
        drums_seed = gr.Number(label="Drums Seed", value=-1, info="-1 for random")
        instruments_seed = gr.Number(label="Instruments Seed", value=-1, info="-1 for random")
    
    # ========== COMBINATION ==========
    gr.Markdown("## πŸŽ›οΈ Step 2: Combine Loops")
    
    with gr.Row():
        num_repeats = gr.Slider(
            label="Number of Repetitions",
            minimum=1,
            maximum=5,
            step=1,
            value=2,
            info="How many times to repeat each loop (creates longer audio)"
        )
        combine_btn = gr.Button("πŸŽ›οΈ Combine Loops", variant="primary", size="lg")
    
    combined_audio = gr.Audio(label="Combined Loops", type="filepath")
    combine_status = gr.Textbox(label="Combine Status", value="Generate loops first")
    
    # ========== MELODYFLOW TRANSFORMATION ==========
    gr.Markdown("## 🎨 Step 3: Transform with MelodyFlow")
    
    with gr.Row():
        with gr.Column():
            transform_prompt = gr.Textbox(
                label="Transformation Prompt",
                value="aggressive industrial techno with distorted sounds",
                placeholder="Describe the style transformation",
                lines=2
            )
            
        with gr.Column():
            transform_solver = gr.Dropdown(
                label="Solver",
                choices=["euler", "midpoint"],
                value="euler",
                info="EULER: faster (25 steps), MIDPOINT: slower (64 steps)"
            )
            transform_flowstep = gr.Slider(
                label="Transform Intensity",
                minimum=0.0,
                maximum=0.15,
                step=0.01,
                value=0.12,
                info="Lower = more dramatic transformation"
            )
    
    transform_btn = gr.Button("🎨 Transform Audio", variant="secondary", size="lg")
    transformed_audio = gr.Audio(label="Transformed Audio", type="filepath")
    transform_status = gr.Textbox(label="Transform Status", value="Combine audio first")
    
    # ========== EVENT HANDLERS ==========
    
    # Generate drums
    generate_drums_btn.click(
        generate_stable_audio_loop,
        inputs=[base_prompt, gr.State("drums"), global_bpm, global_bars, drums_seed],
        outputs=[drums_audio, drums_status]
    )
    
    # Generate instruments  
    generate_instruments_btn.click(
        generate_stable_audio_loop,
        inputs=[base_prompt, gr.State("instruments"), global_bpm, global_bars, instruments_seed],
        outputs=[instruments_audio, instruments_status]
    )
    
    # Combine loops
    combine_btn.click(
        combine_loops,
        inputs=[drums_audio, instruments_audio, global_bpm, global_bars, num_repeats],
        outputs=[combined_audio, combine_status]
    )
    
    # Transform with MelodyFlow
    transform_btn.click(
        transform_with_melodyflow_api,
        inputs=[combined_audio, transform_prompt, transform_solver, transform_flowstep],
        outputs=[transformed_audio, transform_status]
    )
    
    # ========== EXAMPLES ==========
    gr.Markdown("## 🎯 Example Workflows")
    
    examples = gr.Examples(
        examples=[
            ["techno", 128, 4, "aggressive industrial techno"],
            ["jazz", 110, 2, "smooth lo-fi jazz with vinyl crackle"],
            ["ambient", 90, 8, "ethereal ambient soundscape"],
            ["hip-hop", 100, 4, "classic boom bap hip-hop"],
            ["drum and bass", 140, 4, "liquid drum and bass"],
        ],
        inputs=[base_prompt, global_bpm, global_bars, transform_prompt],
    )

if __name__ == "__main__":
    iface.launch()