thecollabagepatch's picture
updating info
59f0768
raw
history blame
23 kB
import gradio as gr
import spaces
import torch
import torchaudio
import io
import base64
import uuid
import os
import time
import re
import threading
import gc
import random
import numpy as np
from einops import rearrange
from huggingface_hub import login
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
from gradio_client import Client, handle_file
from contextlib import contextmanager
# Global model storage
model_cache = {}
model_lock = threading.Lock()
@contextmanager
def resource_cleanup():
"""Lightweight context manager - let zerogpu handle memory management"""
try:
yield
finally:
# Minimal cleanup - let zerogpu handle the heavy lifting
if torch.cuda.is_available():
torch.cuda.synchronize()
# Removed aggressive empty_cache() and gc.collect() calls
def load_stable_audio_model():
"""Load stable-audio-open-small model if not already loaded."""
with model_lock:
if 'stable_audio_model' not in model_cache:
print("πŸ”„ Loading stable-audio-open-small model...")
load_start = time.time()
# Authenticate with HF
hf_token = os.getenv('HF_TOKEN')
if hf_token:
login(token=hf_token)
print(f"βœ… HF authenticated")
# Load model
model, config = get_pretrained_model("stabilityai/stable-audio-open-small")
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
if device == "cuda":
model = model.half()
load_time = time.time() - load_start
print(f"βœ… Model loaded on {device} in {load_time:.2f}s")
# Aggressive model persistence - warm up with dummy generation
print("πŸ”₯ Warming up model...")
warmup_start = time.time()
try:
dummy_conditioning = [{"prompt": "test", "seconds_total": 12}]
with torch.no_grad():
_ = generate_diffusion_cond(
model,
steps=1, # Minimal steps for warmup
cfg_scale=1.0,
conditioning=dummy_conditioning,
sample_size=config["sample_size"],
sampler_type="pingpong",
device=device,
seed=42
)
warmup_time = time.time() - warmup_start
print(f"πŸ”₯ Model warmed up in {warmup_time:.2f}s")
except Exception as e:
print(f"⚠️ Warmup failed (but continuing): {e}")
model_cache['stable_audio_model'] = model
model_cache['stable_audio_config'] = config
model_cache['stable_audio_device'] = device
print(f"βœ… Stable Audio model ready for fast generation!")
else:
print("♻️ Using cached model (should be fast!)")
return (model_cache['stable_audio_model'],
model_cache['stable_audio_config'],
model_cache['stable_audio_device'])
@spaces.GPU(duration=12)
def generate_stable_audio_loop(prompt, loop_type, bpm, bars, seed=-1):
"""Generate a BPM-aware loop using stable-audio-open-small"""
try:
total_start = time.time()
# Model loading timing
load_start = time.time()
model, config, device = load_stable_audio_model()
load_time = time.time() - load_start
# Calculate loop duration based on BPM and bars
seconds_per_beat = 60.0 / bpm
seconds_per_bar = seconds_per_beat * 4 # 4/4 time
target_loop_duration = seconds_per_bar * bars
# Enhance prompt based on loop type and BPM
if loop_type == "drums":
enhanced_prompt = f"{prompt} drum loop {bpm}bpm"
negative_prompt = "melody, harmony, pitched instruments, vocals, singing"
else: # instruments
enhanced_prompt = f"{prompt} instrumental loop {bpm}bpm"
negative_prompt = "drums, percussion, kick, snare, hi-hat"
# Set seed
if seed == -1:
seed = random.randint(0, 2**32 - 1)
torch.manual_seed(seed)
if device == "cuda":
torch.cuda.manual_seed(seed)
print(f"🎡 Generating {loop_type} loop:")
print(f" Enhanced prompt: {enhanced_prompt}")
print(f" Target duration: {target_loop_duration:.2f}s ({bars} bars at {bpm}bpm)")
print(f" Seed: {seed}")
# Prepare conditioning
conditioning_start = time.time()
conditioning = [{
"prompt": enhanced_prompt,
"seconds_total": 12 # Model generates 12s max
}]
negative_conditioning = [{
"prompt": negative_prompt,
"seconds_total": 12
}]
conditioning_time = time.time() - conditioning_start
# Generation timing
generation_start = time.time()
# Removed aggressive resource cleanup wrapper
# Clear GPU cache once before generation (not after)
if device == "cuda":
torch.cuda.empty_cache()
with torch.cuda.amp.autocast(enabled=(device == "cuda")):
output = generate_diffusion_cond(
model,
steps=8, # Fast generation
cfg_scale=1.0, # Good balance for loops
conditioning=conditioning,
negative_conditioning=negative_conditioning,
sample_size=config["sample_size"],
sampler_type="pingpong",
device=device,
seed=seed
)
generation_time = time.time() - generation_start
# Post-processing timing
postproc_start = time.time()
# Post-process audio
output = rearrange(output, "b d n -> d (b n)") # (2, N) stereo
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1)
# Extract the loop portion
sample_rate = config["sample_rate"]
loop_samples = int(target_loop_duration * sample_rate)
available_samples = output.shape[1]
if loop_samples > available_samples:
loop_samples = available_samples
actual_duration = available_samples / sample_rate
print(f"⚠️ Requested {target_loop_duration:.2f}s, got {actual_duration:.2f}s")
# Extract loop from beginning (cleanest beat alignment)
loop_output = output[:, :loop_samples]
loop_output_int16 = loop_output.mul(32767).to(torch.int16).cpu()
# Save to temporary file
loop_filename = f"loop_{loop_type}_{bpm}bpm_{bars}bars_{seed}.wav"
torchaudio.save(loop_filename, loop_output_int16, sample_rate)
postproc_time = time.time() - postproc_start
total_time = time.time() - total_start
actual_duration = loop_samples / sample_rate
# Detailed timing breakdown
print(f"⏱️ Timing breakdown:")
print(f" Model load: {load_time:.2f}s")
print(f" Conditioning: {conditioning_time:.3f}s")
print(f" Generation: {generation_time:.2f}s")
print(f" Post-processing: {postproc_time:.3f}s")
print(f" Total: {total_time:.2f}s")
print(f"βœ… {loop_type.title()} loop: {actual_duration:.2f}s audio in {total_time:.2f}s")
return loop_filename, f"Generated {actual_duration:.2f}s {loop_type} loop at {bpm}bpm ({bars} bars) in {total_time:.2f}s"
except Exception as e:
print(f"❌ Generation error: {str(e)}")
return None, f"Error: {str(e)}"
def combine_loops(drums_audio, instruments_audio, bpm, bars, num_repeats):
"""Combine drum and instrument loops with specified repetitions"""
try:
if not drums_audio and not instruments_audio:
return None, "No audio files to combine"
# Calculate timing
seconds_per_beat = 60.0 / bpm
seconds_per_bar = seconds_per_beat * 4
loop_duration = seconds_per_bar * bars
total_duration = loop_duration * num_repeats
print(f"πŸŽ›οΈ Combining loops:")
print(f" Loop duration: {loop_duration:.2f}s ({bars} bars)")
print(f" Repeats: {num_repeats}")
print(f" Total duration: {total_duration:.2f}s")
combined_audio = None
sample_rate = None
# Process each audio file
for audio_path, audio_type in [(drums_audio, "drums"), (instruments_audio, "instruments")]:
if audio_path:
# Load audio
waveform, sr = torchaudio.load(audio_path)
if sample_rate is None:
sample_rate = sr
# Ensure we have the exact loop duration
target_samples = int(loop_duration * sr)
if waveform.shape[1] > target_samples:
waveform = waveform[:, :target_samples]
elif waveform.shape[1] < target_samples:
# Pad if necessary
padding = target_samples - waveform.shape[1]
waveform = torch.cat([waveform, torch.zeros(waveform.shape[0], padding)], dim=1)
# Repeat the loop
repeated_waveform = waveform.repeat(1, num_repeats)
print(f" {audio_type}: {waveform.shape[1]/sr:.2f}s repeated {num_repeats}x = {repeated_waveform.shape[1]/sr:.2f}s")
# Add to combined audio
if combined_audio is None:
combined_audio = repeated_waveform
else:
combined_audio = combined_audio + repeated_waveform
if combined_audio is None:
return None, "No valid audio to combine"
# Normalize to prevent clipping
combined_audio = combined_audio / torch.max(torch.abs(combined_audio))
combined_audio = combined_audio.clamp(-1, 1)
# Convert to int16 and save
combined_audio_int16 = combined_audio.mul(32767).to(torch.int16)
combined_filename = f"combined_{bpm}bpm_{bars}bars_{num_repeats}loops_{random.randint(1000, 9999)}.wav"
torchaudio.save(combined_filename, combined_audio_int16, sample_rate)
actual_duration = combined_audio.shape[1] / sample_rate
status = f"Combined into {actual_duration:.2f}s audio ({num_repeats} Γ— {bars} bars at {bpm}bpm)"
print(f"βœ… {status}")
return combined_filename, status
except Exception as e:
print(f"❌ Combine error: {str(e)}")
return None, f"Combine error: {str(e)}"
def transform_with_melodyflow_api(audio_path, prompt, solver="euler", flowstep=0.12):
"""Transform audio using Facebook/MelodyFlow space API"""
if audio_path is None:
return None, "❌ No audio file provided"
try:
# Initialize client for Facebook MelodyFlow space
client = Client("facebook/MelodyFlow")
# Set steps based on solver
if solver == "midpoint":
base_steps = 128
effective_steps = base_steps // 2 # 64 effective steps
else: # euler
base_steps = 125
effective_steps = base_steps // 5 # 25 effective steps
print(f"πŸŽ›οΈ MelodyFlow transformation:")
print(f" Prompt: {prompt}")
print(f" Solver: {solver} ({effective_steps} effective steps)")
print(f" Flowstep: {flowstep}")
# Call the MelodyFlow API
result = client.predict(
model="facebook/melodyflow-t24-30secs",
text=prompt,
solver=solver,
steps=base_steps,
target_flowstep=flowstep,
regularize=solver == "euler",
regularization_strength=0.2,
duration=30,
melody=handle_file(audio_path),
api_name="/predict"
)
if result and len(result) > 0 and result[0]:
# Save the result locally
output_filename = f"melodyflow_transformed_{random.randint(1000, 9999)}.wav"
import shutil
shutil.copy2(result[0], output_filename)
status_msg = f"βœ… Transformed with prompt: '{prompt}' (flowstep: {flowstep}, {effective_steps} steps)"
return output_filename, status_msg
else:
return None, "❌ MelodyFlow API returned no results"
except Exception as e:
return None, f"❌ MelodyFlow API error: {str(e)}"
def calculate_optimal_bars(bpm):
"""Calculate optimal bar count for given BPM to fit in ~10s"""
seconds_per_beat = 60.0 / bpm
seconds_per_bar = seconds_per_beat * 4
max_duration = 10.0
for bars in [8, 4, 2, 1]:
if seconds_per_bar * bars <= max_duration:
return bars
return 1
# ========== GRADIO INTERFACE ==========
with gr.Blocks(title="🎡 Stable Audio Loop Generator") as iface:
gr.Markdown("# 🎡 Stable Audio Loop Generator")
gr.Markdown("**Generate synchronized drum and instrument loops with stable-audio-open-small, then transform with MelodyFlow!**")
# ========== MODELS & PROJECT INFO ==========
with gr.Accordion("πŸ“š About the Models & Project", open=False):
with gr.Accordion("πŸš€ stable-audio-open-small", open=False):
gr.Markdown("""
**stable-audio-open-small** is an incredibly fast model from the zachs and friends at Stability AI. It's capable of generating 12 seconds of audio in under a second, which gives rise to a lot of very interesting kinds of UX.
**Note about generation speed in this zerogpu space:** You'll notice generation times are a little slower here than if you were to use the model on a local GPU. That's just a result of the way zerogpu spaces work I think... let me know if there's a way to keep the model loaded in a zerogpu space!
**Links:**
- πŸ€— [Model on HuggingFace](https://huggingface.co/stabilityai/stable-audio-open-small)
- 🐳 [Docker API Implementation](https://github.com/betweentwomidnights/stable-audio-api)
""")
with gr.Accordion("πŸŽ›οΈ MelodyFlow", open=False):
gr.Markdown("""
**MelodyFlow** is a model by Meta that can use regularized latent inversion to do transformations of input audio.
It's not officially a part of the audiocraft repo yet, but we use it as a docker container in the backend for gary4live.
**Links:**
- πŸ€— [MelodyFlow Space](https://huggingface.co/spaces/Facebook/MelodyFlow)
- 🐳 [Standalone API Implementation](https://github.com/betweentwomidnights/melodyflow)
""")
with gr.Accordion("🎹 gary4live Project", open=False):
gr.Markdown("""
**gary4live** is a free/open source project that uses these models, along with MusicGen, inside of Ableton Live. I run a backend myself so that we can all experiment with it, but you can also spin the backend up locally using docker-compose with our repo.
**Project Links:**
- 🎡 [Main Project Repo](https://github.com/betweentwomidnights/gary4live)
- πŸ–₯️ [Backend Implementation](https://github.com/betweentwomidnights/gary-backend-combined)
**Installers:**
- πŸ’Ώ [PC & Mac Installers on Gumroad](https://thepatch.gumroad.com/l/gary4live)
""")
with gr.Accordion("How This Works", open=False):
gr.Markdown("""
**Workflow:**
1. **Set global BPM and bars** - affects both drum and instrument generation
2. **Generate drum loop** - creates BPM-aware percussion
3. **Generate instrument loop** - creates melodic/harmonic content
4. **Combine loops** - layer them together with repetitions (up to 30s)
5. **Transform** - use MelodyFlow to stylistically transform the combined result
**Features:**
- BPM-aware generation ensures perfect sync between loops
- Negative prompting separates drums from instruments cleanly
- Smart bar calculation optimizes loop length for the BPM
- MelodyFlow integration for advanced style transfer
""")
# ========== GLOBAL CONTROLS ==========
gr.Markdown("## πŸŽ›οΈ Global Settings")
with gr.Row():
global_bpm = gr.Dropdown(
label="Global BPM",
choices=[90, 100, 110, 120, 130, 140, 150],
value=120,
info="BPM applied to both drum and instrument generation"
)
global_bars = gr.Dropdown(
label="Loop Length (Bars)",
choices=[1, 2, 4, 8],
value=4,
info="Number of bars for each loop"
)
base_prompt = gr.Textbox(
label="Base Prompt",
value="techno",
placeholder="e.g., 'techno', 'jazz', 'ambient', 'hip-hop'",
info="Style applied to both loops"
)
# Auto-suggest optimal bars based on BPM
def update_suggested_bars(bpm):
optimal = calculate_optimal_bars(bpm)
return gr.update(info=f"Suggested: {optimal} bars for {bpm}bpm (≀10s)")
global_bpm.change(update_suggested_bars, inputs=[global_bpm], outputs=[global_bars])
# ========== LOOP GENERATION ==========
gr.Markdown("## πŸ₯ Step 1: Generate Individual Loops")
with gr.Row():
with gr.Column():
gr.Markdown("### πŸ₯ Drum Loop")
generate_drums_btn = gr.Button("Generate Drums", variant="primary", size="lg")
drums_audio = gr.Audio(label="Drum Loop", type="filepath")
drums_status = gr.Textbox(label="Drums Status", value="Ready to generate")
with gr.Column():
gr.Markdown("### 🎹 Instrument Loop")
generate_instruments_btn = gr.Button("Generate Instruments", variant="secondary", size="lg")
instruments_audio = gr.Audio(label="Instrument Loop", type="filepath")
instruments_status = gr.Textbox(label="Instruments Status", value="Ready to generate")
# Seed controls
with gr.Row():
drums_seed = gr.Number(label="Drums Seed", value=-1, info="-1 for random")
instruments_seed = gr.Number(label="Instruments Seed", value=-1, info="-1 for random")
# ========== COMBINATION ==========
gr.Markdown("## πŸŽ›οΈ Step 2: Combine Loops")
with gr.Row():
num_repeats = gr.Slider(
label="Number of Repetitions",
minimum=1,
maximum=5,
step=1,
value=2,
info="How many times to repeat each loop (creates longer audio)"
)
combine_btn = gr.Button("πŸŽ›οΈ Combine Loops", variant="primary", size="lg")
combined_audio = gr.Audio(label="Combined Loops", type="filepath")
combine_status = gr.Textbox(label="Combine Status", value="Generate loops first")
# ========== MELODYFLOW TRANSFORMATION ==========
gr.Markdown("## 🎨 Step 3: Transform with MelodyFlow")
with gr.Row():
with gr.Column():
transform_prompt = gr.Textbox(
label="Transformation Prompt",
value="aggressive industrial techno with distorted sounds",
placeholder="Describe the style transformation",
lines=2
)
with gr.Column():
transform_solver = gr.Dropdown(
label="Solver",
choices=["euler", "midpoint"],
value="euler",
info="EULER: faster (25 steps), MIDPOINT: slower (64 steps)"
)
transform_flowstep = gr.Slider(
label="Transform Intensity",
minimum=0.0,
maximum=0.15,
step=0.01,
value=0.12,
info="Lower = more dramatic transformation"
)
transform_btn = gr.Button("🎨 Transform Audio", variant="secondary", size="lg")
transformed_audio = gr.Audio(label="Transformed Audio", type="filepath")
transform_status = gr.Textbox(label="Transform Status", value="Combine audio first")
# ========== EVENT HANDLERS ==========
# Generate drums
generate_drums_btn.click(
generate_stable_audio_loop,
inputs=[base_prompt, gr.State("drums"), global_bpm, global_bars, drums_seed],
outputs=[drums_audio, drums_status]
)
# Generate instruments
generate_instruments_btn.click(
generate_stable_audio_loop,
inputs=[base_prompt, gr.State("instruments"), global_bpm, global_bars, instruments_seed],
outputs=[instruments_audio, instruments_status]
)
# Combine loops
combine_btn.click(
combine_loops,
inputs=[drums_audio, instruments_audio, global_bpm, global_bars, num_repeats],
outputs=[combined_audio, combine_status]
)
# Transform with MelodyFlow
transform_btn.click(
transform_with_melodyflow_api,
inputs=[combined_audio, transform_prompt, transform_solver, transform_flowstep],
outputs=[transformed_audio, transform_status]
)
# ========== EXAMPLES ==========
gr.Markdown("## 🎯 Example Workflows")
examples = gr.Examples(
examples=[
["techno", 128, 4, "aggressive industrial techno"],
["jazz", 110, 2, "smooth lo-fi jazz with vinyl crackle"],
["ambient", 90, 8, "ethereal ambient soundscape"],
["hip-hop", 100, 4, "classic boom bap hip-hop"],
["drum and bass", 140, 4, "liquid drum and bass"],
],
inputs=[base_prompt, global_bpm, global_bars, transform_prompt],
)
if __name__ == "__main__":
iface.launch()