thecollabagepatch's picture
download buttons for everything
acecd87
import gradio as gr
import spaces
import torch
import torchaudio
import io
import base64
import uuid
import os
import time
import re
import threading
import gc
import random
import numpy as np
from einops import rearrange
from huggingface_hub import login
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
from gradio_client import Client, handle_file
from contextlib import contextmanager
# MelodyFlow Variations - extracted from variations.py
MELODYFLOW_VARIATIONS = {
# Acoustic Instruments
'accordion_folk': "Lively accordion music with a European folk feeling, perfect for a travel documentary about traditional culture and street performances in Paris",
'banjo_bluegrass': "Authentic bluegrass banjo band performance with rich picking patterns, ideal for a heartfelt documentary about American rural life and traditional crafts",
'piano_classical': "Expressive classical piano performance with dynamic range and emotional depth, ideal for a luxury brand commercial",
'celtic': "Traditional Celtic arrangement with fiddle and flute, perfect for a documentary about Ireland's stunning landscapes and ancient traditions",
'strings_quartet': "Elegant string quartet arrangement with rich harmonies and expressive dynamics, perfect for wedding ceremony music",
# Synthesizer Variations
'synth_retro': "1980s style synthesizer melody with warm analog pads and arpeggios, perfect for a nostalgic sci-fi movie soundtrack",
'synth_modern': "Modern electronic production with crisp digital synthesizer arpeggios and vocoder effects, ideal for a tech product launch video",
'synth_ambient': "Atmospheric synthesizer pads with reverb and delay, perfect for a meditation app or wellness commercial",
'synth_edm': "High-energy EDM synth saw leads with sidechain compression, pitch bends, perfect for sports highlights or action sequences",
# Band Arrangements
'rock_band': "Full rock band arrangement with electric guitars, bass, and drums, perfect for an action movie trailer",
# Hybrid/Special
'cinematic_epic': "Epic orchestral arrangement with modern hybrid elements, synthesizers, and percussion, perfect for movie trailers",
'lofi_chill': "Lo-fi hip hop style with vinyl crackle, mellow piano, and tape saturation, perfect for study or focus playlists",
'synth_bass': "Deep analog synthesizer bassline with modern production and subtle modulation, perfect for electronic music production",
'retro_rpg': "16-bit era JRPG soundtrack with bright melodic synthesizers, orchestral elements, and adventurous themes, perfect for a fantasy video game battle scene or overworld exploration",
'steel_drums': "Vibrant Caribbean steel drum ensemble with tropical percussion and uplifting melodies, perfect for a beach resort commercial or travel documentary",
'chiptune': "8-bit video game soundtrack with arpeggiated melodies and classic NES-style square waves, perfect for a retro platformer or action game",
'gamelan_fusion': "Indonesian gamelan ensemble with metallic percussion, gongs, and ethereal textures, perfect for a meditation app or spiritual documentary",
'music_box': "Delicate music box melody with gentle bell tones and ethereal ambiance, perfect for a children's lullaby or magical fantasy scene",
# Hip Hop / Trap Percussion
'trap_808': "808 bass",
'lo_fi_drums': "lofi hiphop percussion",
'boom_bap': "Classic 90s boom bap hip hop drums with punchy kicks, crisp snares, and jazz sample chops, perfect for documentary footage of urban street scenes and skateboarding",
'percussion_ensemble': "Rich percussive ensemble with djembe, congas, shakers, and tribal drums creating complex polyrhythms, perfect for nature documentaries about rainforests or ancient cultural rituals",
# Enhanced Electronic Music
'future_bass': "Energetic future bass with filtered supersaws, pitch-bending lead synths, heavy sidechain, and chopped vocal samples, perfect for extreme sports highlights or uplifting motivational content",
'synthwave_retro': "80s retrofuturistic synthwave with gated reverb drums, analog arpeggios, neon-bright lead synths and driving bass, perfect for cyberpunk-themed technology showcases or retro gaming montages",
'melodic_techno': "Hypnotic melodic techno with pulsing bass, atmospheric pads, and evolving synthesizer sequences with subtle filter modulation, ideal for timelapse footage of urban nightscapes or architectural showcases",
'dubstep_wobble': "Heavy dubstep with aggressive wobble bass, metallic synthesizers, distorted drops, and tension-building risers, perfect for action sequence transitions or gaming highlight reels",
# Glitchy Effects
'glitch_hop': "Glitch hop with stuttering sample slices, bit-crushed percussion, granular synthesis textures and digital artifacts, perfect for technology malfunction scenes or data visualization animations",
'digital_disruption': "Heavily glitched soundscape with digital artifacts, buffer errors, granular time stretching, and corrupted audio samples, ideal for cybersecurity themes or digital distortion transitions in tech presentations",
'circuit_bent': "Circuit-bent toy sounds with unpredictable pitch shifts, broken electronic tones, and hardware malfunction artifacts, perfect for creative coding demonstrations or innovative technology exhibitions",
# Experimental Hybrids
'orchestral_glitch': "Cinematic orchestral elements disrupted by digital glitches, granular textures, and temporal distortions, perfect for science fiction trailers or futuristic product reveals with contrasting classical and modern elements",
'vapor_drums': "Vaporwave drum processing with extreme pitch and time manipulation, reverb-drenched samples, and retro commercial music elements, ideal for nostalgic internet culture documentaries or retrofuturistic art installations",
'industrial_textures': "Harsh industrial soundscape with mechanical percussion, factory recordings, metallic impacts, and distorted synth drones, perfect for manufacturing process videos or dystopian urban environments",
'jungle_breaks': "High-energy jungle drum breaks with choppy breakbeat samples, deep sub bass, and dub reggae influences, perfect for fast-paced urban chase scenes or extreme sports montages"
}
# Global model storage
model_cache = {}
model_lock = threading.Lock()
@contextmanager
def resource_cleanup():
"""Lightweight context manager - let zerogpu handle memory management"""
try:
yield
finally:
# Minimal cleanup - let zerogpu handle the heavy lifting
if torch.cuda.is_available():
torch.cuda.synchronize()
# Removed aggressive empty_cache() and gc.collect() calls
def load_stable_audio_model():
"""Load stable-audio-open-small model if not already loaded."""
with model_lock:
if 'stable_audio_model' not in model_cache:
print("🔄 Loading stable-audio-open-small model...")
load_start = time.time()
# Authenticate with HF
hf_token = os.getenv('HF_TOKEN')
if hf_token:
login(token=hf_token)
print(f"✅ HF authenticated")
# Load model
model, config = get_pretrained_model("stabilityai/stable-audio-open-small")
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
if device == "cuda":
model = model.half()
load_time = time.time() - load_start
print(f"✅ Model loaded on {device} in {load_time:.2f}s")
# Aggressive model persistence - warm up with dummy generation
print("🔥 Warming up model...")
warmup_start = time.time()
try:
dummy_conditioning = [{"prompt": "test", "seconds_total": 12}]
with torch.no_grad():
_ = generate_diffusion_cond(
model,
steps=1, # Minimal steps for warmup
cfg_scale=1.0,
conditioning=dummy_conditioning,
sample_size=config["sample_size"],
sampler_type="pingpong",
device=device,
seed=42
)
warmup_time = time.time() - warmup_start
print(f"🔥 Model warmed up in {warmup_time:.2f}s")
except Exception as e:
print(f"⚠️ Warmup failed (but continuing): {e}")
model_cache['stable_audio_model'] = model
model_cache['stable_audio_config'] = config
model_cache['stable_audio_device'] = device
print(f"✅ Stable Audio model ready for fast generation!")
else:
print("♻️ Using cached model (should be fast!)")
return (model_cache['stable_audio_model'],
model_cache['stable_audio_config'],
model_cache['stable_audio_device'])
@spaces.GPU(duration=12)
def generate_stable_audio_loop(prompt, loop_type, bpm, bars, steps, cfg_scale, seed=-1):
"""Generate a BPM-aware loop using stable-audio-open-small"""
try:
total_start = time.time()
# Model loading timing
load_start = time.time()
model, config, device = load_stable_audio_model()
load_time = time.time() - load_start
# Calculate loop duration based on BPM and bars
seconds_per_beat = 60.0 / bpm
seconds_per_bar = seconds_per_beat * 4 # 4/4 time
target_loop_duration = seconds_per_bar * bars
# Enhance prompt based on loop type and BPM - minimal modification
if loop_type == "drums":
enhanced_prompt = f"{prompt} {bpm}bpm"
# Comprehensive negative prompting for drums - exclude all melodic/harmonic content
negative_prompt = "melody, harmony, pitched instruments, vocals, singing, piano, guitar, bass, synth, strings, horns, woodwinds, flute, saxophone, violin, cello, organ, keyboard, chords, notes, musical scale, tonal, melodic, harmonic"
else: # instruments
enhanced_prompt = f"{prompt} {bpm}bpm"
# Comprehensive negative prompting for instruments - exclude all percussive content
negative_prompt = "drums, percussion, kick, snare, hi-hat, cymbals, tom, drum kit, rhythm section, beats, drumming, percussive, drum machine, 808, trap drums, boom bap drums, breakbeat, drum breaks, kick drum, snare drum"
# Set seed
if seed == -1:
seed = random.randint(0, 2**32 - 1)
torch.manual_seed(seed)
if device == "cuda":
torch.cuda.manual_seed(seed)
print(f"🎵 Generating {loop_type} loop:")
print(f" Enhanced prompt: {enhanced_prompt}")
print(f" Target duration: {target_loop_duration:.2f}s ({bars} bars at {bpm}bpm)")
print(f" Steps: {steps}, CFG Scale: {cfg_scale}")
print(f" Seed: {seed}")
# Prepare conditioning
conditioning_start = time.time()
conditioning = [{
"prompt": enhanced_prompt,
"seconds_total": 12 # Model generates 12s max
}]
negative_conditioning = [{
"prompt": negative_prompt,
"seconds_total": 12
}]
conditioning_time = time.time() - conditioning_start
# Generation timing
generation_start = time.time()
# Clear GPU cache once before generation (not after)
# if device == "cuda":
# torch.cuda.empty_cache()
with torch.cuda.amp.autocast(enabled=(device == "cuda")):
output = generate_diffusion_cond(
model,
steps=steps, # User-configurable steps
cfg_scale=cfg_scale, # User-configurable CFG scale
conditioning=conditioning,
negative_conditioning=negative_conditioning,
sample_size=config["sample_size"],
sampler_type="pingpong",
device=device,
seed=seed
)
generation_time = time.time() - generation_start
# Post-processing timing
postproc_start = time.time()
# Post-process audio
output = rearrange(output, "b d n -> d (b n)") # (2, N) stereo
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1)
# Extract the loop portion
sample_rate = config["sample_rate"]
loop_samples = int(target_loop_duration * sample_rate)
available_samples = output.shape[1]
if loop_samples > available_samples:
loop_samples = available_samples
actual_duration = available_samples / sample_rate
print(f"⚠️ Requested {target_loop_duration:.2f}s, got {actual_duration:.2f}s")
# Extract loop from beginning (cleanest beat alignment)
loop_output = output[:, :loop_samples]
loop_output_int16 = loop_output.mul(32767).to(torch.int16).cpu()
# Save to temporary file
loop_filename = f"loop_{loop_type}_{bpm}bpm_{bars}bars_{seed}.wav"
torchaudio.save(loop_filename, loop_output_int16, sample_rate)
postproc_time = time.time() - postproc_start
total_time = time.time() - total_start
actual_duration = loop_samples / sample_rate
# Detailed timing breakdown
print(f"⏱️ Timing breakdown:")
print(f" Model load: {load_time:.2f}s")
print(f" Conditioning: {conditioning_time:.3f}s")
print(f" Generation: {generation_time:.2f}s")
print(f" Post-processing: {postproc_time:.3f}s")
print(f" Total: {total_time:.2f}s")
print(f"✅ {loop_type.title()} loop: {actual_duration:.2f}s audio in {total_time:.2f}s")
return loop_filename, f"Generated {actual_duration:.2f}s {loop_type} loop at {bpm}bpm ({bars} bars) in {total_time:.2f}s (steps: {steps}, cfg: {cfg_scale})"
except Exception as e:
print(f"❌ Generation error: {str(e)}")
return None, f"Error: {str(e)}"
def combine_loops(drums_audio, instruments_audio, bpm, bars, num_repeats):
"""Combine drum and instrument loops with specified repetitions"""
try:
if not drums_audio and not instruments_audio:
return None, "No audio files to combine"
# Calculate timing
seconds_per_beat = 60.0 / bpm
seconds_per_bar = seconds_per_beat * 4
loop_duration = seconds_per_bar * bars
total_duration = loop_duration * num_repeats
print(f"🎛️ Combining loops:")
print(f" Loop duration: {loop_duration:.2f}s ({bars} bars)")
print(f" Repeats: {num_repeats}")
print(f" Total duration: {total_duration:.2f}s")
combined_audio = None
sample_rate = None
# Process each audio file
for audio_path, audio_type in [(drums_audio, "drums"), (instruments_audio, "instruments")]:
if audio_path:
# Load audio
waveform, sr = torchaudio.load(audio_path)
if sample_rate is None:
sample_rate = sr
# Ensure we have the exact loop duration
target_samples = int(loop_duration * sr)
if waveform.shape[1] > target_samples:
waveform = waveform[:, :target_samples]
elif waveform.shape[1] < target_samples:
# Pad if necessary
padding = target_samples - waveform.shape[1]
waveform = torch.cat([waveform, torch.zeros(waveform.shape[0], padding)], dim=1)
# Repeat the loop
repeated_waveform = waveform.repeat(1, num_repeats)
print(f" {audio_type}: {waveform.shape[1]/sr:.2f}s repeated {num_repeats}x = {repeated_waveform.shape[1]/sr:.2f}s")
# Add to combined audio
if combined_audio is None:
combined_audio = repeated_waveform
else:
combined_audio = combined_audio + repeated_waveform
if combined_audio is None:
return None, "No valid audio to combine"
# Normalize to prevent clipping
combined_audio = combined_audio / torch.max(torch.abs(combined_audio))
combined_audio = combined_audio.clamp(-1, 1)
# Convert to int16 and save
combined_audio_int16 = combined_audio.mul(32767).to(torch.int16)
combined_filename = f"combined_{bpm}bpm_{bars}bars_{num_repeats}loops_{random.randint(1000, 9999)}.wav"
torchaudio.save(combined_filename, combined_audio_int16, sample_rate)
actual_duration = combined_audio.shape[1] / sample_rate
status = f"Combined into {actual_duration:.2f}s audio ({num_repeats} × {bars} bars at {bpm}bpm)"
print(f"✅ {status}")
return combined_filename, status
except Exception as e:
print(f"❌ Combine error: {str(e)}")
return None, f"Combine error: {str(e)}"
def transform_with_melodyflow_api(audio_path, prompt, solver="euler", flowstep=0.12):
"""Transform audio using Facebook/MelodyFlow space API"""
if audio_path is None:
return None, "❌ No audio file provided"
try:
# Initialize client for Facebook MelodyFlow space
client = Client("facebook/MelodyFlow")
# Set steps based on solver
if solver == "midpoint":
base_steps = 128
effective_steps = base_steps // 2 # 64 effective steps
else: # euler
base_steps = 125
effective_steps = base_steps // 5 # 25 effective steps
print(f"🎛️ MelodyFlow transformation:")
print(f" Prompt: {prompt}")
print(f" Solver: {solver} ({effective_steps} effective steps)")
print(f" Flowstep: {flowstep}")
# Call the MelodyFlow API
result = client.predict(
model="facebook/melodyflow-t24-30secs",
text=prompt,
solver=solver,
steps=base_steps,
target_flowstep=flowstep,
regularize=solver == "euler",
regularization_strength=0.2,
duration=30,
melody=handle_file(audio_path),
api_name="/predict"
)
if result and len(result) > 0 and result[0]:
# Save the result locally
output_filename = f"melodyflow_transformed_{random.randint(1000, 9999)}.wav"
import shutil
shutil.copy2(result[0], output_filename)
status_msg = f"✅ Transformed with prompt: '{prompt}' (flowstep: {flowstep}, {effective_steps} steps)"
return output_filename, status_msg
else:
return None, "❌ MelodyFlow API returned no results"
except Exception as e:
return None, f"❌ MelodyFlow API error: {str(e)}"
def extend_with_musicgen_api(audio_path, prompt_duration, musicgen_model, output_duration):
"""Extend audio using the micro-slot-machine space API"""
if audio_path is None:
return None, "❌ No audio file provided"
try:
# Initialize client for micro-slot-machine space
client = Client("thepatch/micro-slot-machine")
print(f"🎼 MusicGen extension:")
print(f" Prompt duration: {prompt_duration} (type: {type(prompt_duration)})")
print(f" Model: {musicgen_model}")
print(f" Output duration: {output_duration} (type: {type(output_duration)})")
# Call the continue_music API
result = client.predict(
input_audio_path=handle_file(audio_path),
prompt_duration=prompt_duration, # Integer from dropdown
musicgen_model=musicgen_model,
output_duration=float(output_duration), # Ensure it's a float
api_name="/continue_music"
)
if result:
# Save the result locally
output_filename = f"musicgen_extended_{random.randint(1000, 9999)}.wav"
import shutil
shutil.copy2(result, output_filename)
status_msg = f"✅ Extended with {musicgen_model} (prompt: {prompt_duration}s, output: {output_duration}s)"
return output_filename, status_msg
else:
return None, "❌ MusicGen API returned no results"
except Exception as e:
return None, f"❌ MusicGen API error: {str(e)}"
def calculate_optimal_bars(bpm):
"""Calculate optimal bar count for given BPM to fit in ~10s"""
seconds_per_beat = 60.0 / bpm
seconds_per_bar = seconds_per_beat * 4
max_duration = 10.0
for bars in [8, 4, 2, 1]:
if seconds_per_bar * bars <= max_duration:
return bars
return 1
"""Calculate optimal bar count for given BPM to fit in ~10s"""
seconds_per_beat = 60.0 / bpm
seconds_per_bar = seconds_per_beat * 4
max_duration = 10.0
for bars in [8, 4, 2, 1]:
if seconds_per_bar * bars <= max_duration:
return bars
return 1
def update_transform_prompt(variation_choice):
"""Update the transformation prompt based on variation selection"""
if variation_choice == "custom":
return gr.update(value="", placeholder="enter your custom transformation prompt", interactive=True)
elif variation_choice in MELODYFLOW_VARIATIONS:
return gr.update(value=MELODYFLOW_VARIATIONS[variation_choice], interactive=True)
else:
return gr.update(value="", placeholder="select a variation or enter custom prompt", interactive=True)
# ========== GRADIO INTERFACE ==========
with gr.Blocks(title="stable-melodyflow") as iface:
gr.Markdown("# stable-melodyflow (aka jerry and terry)")
gr.Markdown("**generate synchronized drum and instrument loops with stable-audio-open-small (jerry), then transform with melodyflow (terry)!**")
# ========== MODELS & PROJECT INFO ==========
with gr.Accordion(" some info about these models", open=False):
with gr.Accordion("🚀 stable-audio-open-small", open=False):
gr.Markdown("""
**stable-audio-open-small** is an incredibly fast model from the zachs and friends at Stability AI. It's capable of generating 12 seconds of audio in under a second, which gives rise to a lot of very interesting kinds of UX.
**note about generation speed in this zerogpu space:** you'll notice generation times are a little slower here than if you were to use the model on a local gpu. that's just a result of the way zerogpu spaces work i think... let me know if there's a way to keep the model loaded in a zerogpu space!
**links:**
- 🤗 [model on HuggingFace](https://huggingface.co/stabilityai/stable-audio-open-small)
there's a docker container at this repo that can be spun up as a standalone api specifically for stable-audio-open-small:
- [stable-audio-api](https://github.com/betweentwomidnights/stable-audio-api)
""")
with gr.Accordion("🎛️ melodyflow", open=False):
gr.Markdown("""
**MelodyFlow** is a model by meta that can use regularized latent inversion to do transformations of input audio.
It's not officially a part of the audiocraft repo yet, but we use it as a docker container in the backend for gary4live. i really enjoy turning my guitar riffs into orchestra.
**links:**
- 🤗 [Official MelodyFlow Space](https://huggingface.co/spaces/Facebook/MelodyFlow)
- [our melodyflow api](https://github.com/betweentwomidnights/melodyflow)
""")
with gr.Accordion("gary4live project", open=False):
gr.Markdown("""
**gary4live** is a free/open source project that uses these models, along with musicGen, inside of ableton live to iterate on your projects with you. i run a backend myself so that we can all experiment with it, but you can also spin the backend up locally using docker-compose with our repo.
**project Links:**
- [frontend repo](https://github.com/betweentwomidnights/gary4live)
- [backend repo](https://github.com/betweentwomidnights/gary-backend-combined)
**installers:**
- [p.c. & mac installers on gumroad](https://thepatch.gumroad.com/l/gary4live)
""")
with gr.Accordion("how this works", open=False):
gr.Markdown("""
**workflow:**
1. **set global bpm and bars** - affects both drum and instrument generation
2. **generate drum loop** - creates BPM-aware percussion with negative prompting to attempt to get rid of instruments
3. **generate instrument loop** - creates melodic/harmonic content with negative prompting to attempt to get rid of drums
4. **combine loops** - layer them together with repetitions (up to 30s)
5. **transform** - use melodyflow to stylistically transform the combined result
**features:**
- bpm-aware generation ensures perfect sync between loops (most the time lol)
- negative prompting separates drums from instruments (most the time)
- smart bar calculation optimizes loop length for the BPM
- preset transformation styles for braindead ease of use
""")
# ========== GLOBAL CONTROLS ==========
gr.Markdown("## 🎛️ global settings")
with gr.Row():
global_bpm = gr.Dropdown(
label="global bpm",
choices=[90, 100, 110, 120, 130, 140, 150],
value=120,
info="bpm applied to both drum and instrument generation. keep this the same for the combine step to work correctly"
)
global_bars = gr.Dropdown(
label="loop length (bars)",
choices=[1, 2, 4],
value=4,
info="number of bars for each loop. keep this the same for both pieces of audio"
)
base_prompt = gr.Textbox(
label="base prompt",
value="lofi hiphop with pianos",
placeholder="e.g., 'aggressive techno', 'lofi hiphop', 'chillwave', 'liquid drum and bass'",
info="prompt applied to either loop. make it more drum/instrument specific for best results"
)
with gr.Row():
generation_steps = gr.Slider(
label="generation steps",
minimum=4,
maximum=16,
step=1,
value=8,
info="more steps = higher quality but slower generation"
)
cfg_scale = gr.Slider(
label="cfg scale",
minimum=0.5,
maximum=2.0,
step=0.1,
value=1.0,
info="higher values = more prompt adherence but potentially less natural"
)
# Auto-suggest optimal bars based on BPM
def update_suggested_bars(bpm):
optimal = calculate_optimal_bars(bpm)
return gr.update(info=f"Suggested: {optimal} bars for {bpm}bpm (≤10s)")
global_bpm.change(update_suggested_bars, inputs=[global_bpm], outputs=[global_bars])
# ========== LOOP GENERATION ==========
gr.Markdown("## step one: generate individual loops")
with gr.Row():
with gr.Column():
gr.Markdown("### drums")
generate_drums_btn = gr.Button("generate drums", variant="primary", size="lg")
drums_audio = gr.Audio(label="drum loop", type="filepath", show_download_button=True)
drums_status = gr.Textbox(label="status", value="ready to generate")
with gr.Column():
gr.Markdown("### instruments")
generate_instruments_btn = gr.Button("generate instruments", variant="secondary", size="lg")
instruments_audio = gr.Audio(label="instrument loop", type="filepath", show_download_button=True)
instruments_status = gr.Textbox(label="status", value="ready to generate")
# Seed controls
with gr.Row():
drums_seed = gr.Number(label="drums seed", value=-1, info="-1 for random")
instruments_seed = gr.Number(label="instruments seed", value=-1, info="-1 for random")
# ========== COMBINATION ==========
gr.Markdown("## step two: combine loops")
with gr.Row():
num_repeats = gr.Slider(
label="number of repetitions",
minimum=1,
maximum=5,
step=1,
value=2,
info="how many times to repeat each loop (creates longer audio). aim for 30 seconds max"
)
combine_btn = gr.Button("combine", variant="primary", size="lg")
combined_audio = gr.Audio(label="combined loops", type="filepath", show_download_button=True)
combine_status = gr.Textbox(label="status", value="Generate loops first")
# ========== MELODYFLOW TRANSFORMATION ==========
gr.Markdown("## step three: transform with melodyflow")
with gr.Row():
with gr.Column():
# Variation dropdown
variation_choice = gr.Dropdown(
label="transformation style preset",
choices=["custom"] + list(MELODYFLOW_VARIATIONS.keys()),
value="custom",
info="select a preset style or choose 'custom' for your own prompt"
)
transform_prompt = gr.Textbox(
label="transformation prompt",
value="",
placeholder="enter your custom transformation prompt",
lines=3,
info="describes the style transformation to apply"
)
with gr.Column():
transform_solver = gr.Dropdown(
label="solver",
choices=["euler", "midpoint"],
value="euler",
info="EULER: faster (25 steps), MIDPOINT: slower (64 steps)"
)
transform_flowstep = gr.Slider(
label="transform intensity",
minimum=0.0,
maximum=0.15,
step=0.01,
value=0.12,
info="Lower = more dramatic transformation"
)
transform_btn = gr.Button("transform audio", variant="secondary", size="lg")
transformed_audio = gr.Audio(label="transformed audio", type="filepath", show_download_button=True)
transform_status = gr.Textbox(label="status", value="Combine audio first")
# ========== MUSICGEN EXTENSION ==========
gr.Markdown("## step four (optional): extend with musicgen")
with gr.Row():
with gr.Column():
musicgen_prompt_duration = gr.Dropdown(
label="prompt duration (seconds)",
choices=[3, 5, 7, 10], # Back to integers since the function expects numbers
value=5,
info="how much of the end to use as prompt for continuation"
)
musicgen_output_duration = gr.Slider(
label="extension duration (seconds)",
minimum=10.0,
maximum=30.0,
step=1.0,
value=20.0,
info="how much new audio to generate"
)
with gr.Column():
musicgen_model_choice = gr.Dropdown(
label="musicgen model",
choices=[
"thepatch/vanya_ai_dnb_0.1 (small)",
"thepatch/bleeps-medium (medium)",
"thepatch/hoenn_lofi (large)"
],
value="thepatch/vanya_ai_dnb_0.1 (small)",
info="various musicgen fine-tunes for different styles"
)
extend_btn = gr.Button("extend with musicgen", variant="primary", size="lg")
extended_audio = gr.Audio(label="extended audio", type="filepath")
extend_status = gr.Textbox(label="status", value="Transform audio first")
# ========== EVENT HANDLERS ==========
# Update transform prompt when variation is selected
variation_choice.change(
update_transform_prompt,
inputs=[variation_choice],
outputs=[transform_prompt]
)
# Generate drums
generate_drums_btn.click(
generate_stable_audio_loop,
inputs=[base_prompt, gr.State("drums"), global_bpm, global_bars, generation_steps, cfg_scale, drums_seed],
outputs=[drums_audio, drums_status]
)
# Generate instruments
generate_instruments_btn.click(
generate_stable_audio_loop,
inputs=[base_prompt, gr.State("instruments"), global_bpm, global_bars, generation_steps, cfg_scale, instruments_seed],
outputs=[instruments_audio, instruments_status]
)
# Combine loops
combine_btn.click(
combine_loops,
inputs=[drums_audio, instruments_audio, global_bpm, global_bars, num_repeats],
outputs=[combined_audio, combine_status]
)
# Transform with MelodyFlow
transform_btn.click(
transform_with_melodyflow_api,
inputs=[combined_audio, transform_prompt, transform_solver, transform_flowstep],
outputs=[transformed_audio, transform_status]
)
# Extend with MusicGen
extend_btn.click(
extend_with_musicgen_api,
inputs=[transformed_audio, musicgen_prompt_duration, musicgen_model_choice, musicgen_output_duration],
outputs=[extended_audio, extend_status]
)
if __name__ == "__main__":
iface.launch()