thecollabagepatch's picture
herewego
3e4e311
raw
history blame
6.84 kB
import gradio as gr
from musiclang_predict import MusicLangPredictor
import random
import subprocess
import os
import torchaudio
import torch
import numpy as np
from audiocraft.models import MusicGen
from audiocraft.data.audio import audio_write
from pydub import AudioSegment
# Utility Functions
def peak_normalize(y, target_peak=0.97):
return target_peak * (y / np.max(np.abs(y)))
def rms_normalize(y, target_rms=0.05):
return y * (target_rms / np.sqrt(np.mean(y**2)))
def preprocess_audio(waveform):
waveform_np = waveform.cpu().squeeze().numpy() # Move to CPU before converting to NumPy
processed_waveform_np = rms_normalize(peak_normalize(waveform_np))
return torch.from_numpy(processed_waveform_np).unsqueeze(0).to(device)
def create_slices(song, sr, slice_duration, bpm, num_slices=5):
song_length = song.shape[-1] / sr
slices = []
# Ensure the first slice is from the beginning of the song
first_slice_waveform = song[..., :int(slice_duration * sr)]
slices.append(first_slice_waveform)
for i in range(1, num_slices):
random_start = random.choice(range(int(slice_duration * sr), int(song_length * sr), int(4 * 60 / bpm * sr)))
slice_end = random_start + int(slice_duration * sr)
if slice_end > song_length * sr:
# Wrap around to the beginning of the song
remaining_samples = int(slice_end - song_length * sr)
slice_waveform = torch.cat([song[..., random_start:], song[..., :remaining_samples]], dim=-1)
else:
slice_waveform = song[..., random_start:slice_end]
if len(slice_waveform.squeeze()) < int(slice_duration * sr):
additional_samples_needed = int(slice_duration * sr) - len(slice_waveform.squeeze())
slice_waveform = torch.cat([slice_waveform, song[..., :additional_samples_needed]], dim=-1)
slices.append(slice_waveform)
return slices
def calculate_duration(bpm, min_duration=29, max_duration=30):
single_bar_duration = 4 * 60 / bpm
bars = max(min_duration // single_bar_duration, 1)
while single_bar_duration * bars < min_duration:
bars += 1
duration = single_bar_duration * bars
while duration > max_duration and bars > 1:
bars -= 1
duration = single_bar_duration * bars
return duration
def generate_music(seed, use_chords, chord_progression, prompt_duration, musicgen_model, num_iterations, bpm):
if seed == "":
seed = random.randint(1, 10000)
ml = MusicLangPredictor('musiclang/musiclang-v2')
try:
seed = int(seed)
except ValueError:
seed = random.randint(1, 10000)
nb_tokens = 4096
temperature = 0.9
top_p = 1.0
if use_chords and chord_progression.strip():
score = ml.predict_chords(
chord_progression,
time_signature=(4, 4),
temperature=temperature,
topp=top_p,
rng_seed=seed
)
else:
score = ml.predict(
nb_tokens=nb_tokens,
temperature=temperature,
topp=top_p,
rng_seed=seed
)
midi_filename = f"output_{seed}.mid"
wav_filename = midi_filename.replace(".mid", ".wav")
score.to_midi(midi_filename, tempo=bpm, time_signature=(4, 4))
subprocess.run(["fluidsynth", "-ni", "font.sf2", midi_filename, "-F", wav_filename, "-r", "44100"])
# Load the generated audio
song, sr = torchaudio.load(wav_filename)
song = song.to(device)
# Use the user-provided BPM value for duration calculation
duration = calculate_duration(bpm)
# Create slices from the song using the user-provided BPM value
slices = create_slices(song, sr, 35, bpm, num_slices=5)
# Load the model
model_continue = MusicGen.get_pretrained(musicgen_model)
# Setting generation parameters
model_continue.set_generation_params(
use_sampling=True,
top_k=250,
top_p=0.0,
temperature=1.0,
duration=duration,
cfg_coef=3
)
all_audio_files = []
for i in range(num_iterations):
slice_idx = i % len(slices)
print(f"Running iteration {i + 1} using slice {slice_idx}...")
prompt_waveform = slices[slice_idx][..., :int(prompt_duration * sr)]
prompt_waveform = preprocess_audio(prompt_waveform)
output = model_continue.generate_continuation(prompt_waveform, prompt_sample_rate=sr, progress=True)
output = output.cpu() # Move the output tensor back to CPU
# Make sure the output tensor has at most 2 dimensions
if len(output.size()) > 2:
output = output.squeeze()
filename_without_extension = f'continue_{i}'
filename_with_extension = f'{filename_without_extension}.wav'
audio_write(filename_with_extension, output, model_continue.sample_rate, strategy="loudness", loudness_compressor=True)
all_audio_files.append(f'{filename_without_extension}.wav.wav') # Assuming the library appends an extra .wav
# Combine all audio files
combined_audio = AudioSegment.empty()
for filename in all_audio_files:
combined_audio += AudioSegment.from_wav(filename)
combined_audio_filename = f"combined_audio_{seed}.mp3"
combined_audio.export(combined_audio_filename, format="mp3")
# Clean up temporary files
os.remove(midi_filename)
os.remove(wav_filename)
for filename in all_audio_files:
os.remove(filename)
return combined_audio_filename
# Check if CUDA is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
iface = gr.Interface(
fn=generate_music,
inputs=[
gr.Textbox(label="Seed (leave blank for random)", value=""),
gr.Checkbox(label="Control Chord Progression", value=False),
gr.Textbox(label="Chord Progression (e.g., Am CM Dm E7 Am)", visible=True),
gr.Dropdown(label="Prompt Duration (seconds)", choices=list(range(1, 11)), value=7),
gr.Textbox(label="MusicGen Model", value="thepatch/vanya_ai_dnb_0.1"),
gr.Slider(label="Number of Iterations", minimum=1, maximum=10, step=1, value=3),
gr.Slider(label="BPM", minimum=60, maximum=200, step=1, value=140)
],
outputs=gr.Audio(label="Generated Music"),
title="Music Generation Slot Machine",
description="Enter a seed to generate music or leave blank for a random tune! Optionally, control the chord progression, prompt duration, MusicGen model, number of iterations, and BPM."
)
iface.launch()