Spaces:
Running
on
Zero
Running
on
Zero
thecollabagepatch
commited on
Commit
•
da99657
1
Parent(s):
2907ea9
fixing continue_music
Browse filesthe way it was appending at the end of generation was causing it to duplicate the section used in prompt_duration, killin them seamless vibes.
no idea how i managed to generate seamlessly several times before noticing. i may be too good at jamming with gary for my demos to be useful 😂
app.py
CHANGED
@@ -1,309 +1,316 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from musiclang_predict import MusicLangPredictor
|
3 |
-
import random
|
4 |
-
import subprocess
|
5 |
-
import os
|
6 |
-
import torchaudio
|
7 |
-
import torch
|
8 |
-
import numpy as np
|
9 |
-
from audiocraft.models import MusicGen
|
10 |
-
from audiocraft.data.audio import audio_write
|
11 |
-
from pydub import AudioSegment
|
12 |
-
import spaces
|
13 |
-
import tempfile
|
14 |
-
from pydub import AudioSegment
|
15 |
-
|
16 |
-
# Check if CUDA is available
|
17 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
-
|
19 |
-
# Utility Functions
|
20 |
-
def peak_normalize(y, target_peak=0.97):
|
21 |
-
return target_peak * (y / np.max(np.abs(y)))
|
22 |
-
|
23 |
-
def rms_normalize(y, target_rms=0.05):
|
24 |
-
return y * (target_rms / np.sqrt(np.mean(y**2)))
|
25 |
-
|
26 |
-
def preprocess_audio(waveform):
|
27 |
-
waveform_np = waveform.cpu().squeeze().numpy() # Move to CPU before converting to NumPy
|
28 |
-
# processed_waveform_np = rms_normalize(peak_normalize(waveform_np))
|
29 |
-
return torch.from_numpy(waveform_np).unsqueeze(0).to(device)
|
30 |
-
|
31 |
-
def create_slices(song, sr, slice_duration, bpm, num_slices=5):
|
32 |
-
song_length = song.shape[-1] / sr
|
33 |
-
slices = []
|
34 |
-
|
35 |
-
# Ensure the first slice is from the beginning of the song
|
36 |
-
first_slice_waveform = song[..., :int(slice_duration * sr)]
|
37 |
-
slices.append(first_slice_waveform)
|
38 |
-
|
39 |
-
for i in range(1, num_slices):
|
40 |
-
possible_start_indices = list(range(int(slice_duration * sr), int(song_length * sr), int(4 * 60 / bpm * sr)))
|
41 |
-
if not possible_start_indices:
|
42 |
-
# If there are no valid start indices, duplicate the first slice
|
43 |
-
slices.append(first_slice_waveform)
|
44 |
-
continue
|
45 |
-
|
46 |
-
random_start = random.choice(possible_start_indices)
|
47 |
-
slice_end = random_start + int(slice_duration * sr)
|
48 |
-
|
49 |
-
if slice_end > song_length * sr:
|
50 |
-
# Wrap around to the beginning of the song
|
51 |
-
remaining_samples = int(slice_end - song_length * sr)
|
52 |
-
slice_waveform = torch.cat([song[..., random_start:], song[..., :remaining_samples]], dim=-1)
|
53 |
-
else:
|
54 |
-
slice_waveform = song[..., random_start:slice_end]
|
55 |
-
|
56 |
-
if len(slice_waveform.squeeze()) < int(slice_duration * sr):
|
57 |
-
additional_samples_needed = int(slice_duration * sr) - len(slice_waveform.squeeze())
|
58 |
-
slice_waveform = torch.cat([slice_waveform, song[..., :additional_samples_needed]], dim=-1)
|
59 |
-
|
60 |
-
slices.append(slice_waveform)
|
61 |
-
|
62 |
-
return slices
|
63 |
-
|
64 |
-
def calculate_duration(bpm, min_duration=29, max_duration=30):
|
65 |
-
single_bar_duration = 4 * 60 / bpm
|
66 |
-
bars = max(min_duration // single_bar_duration, 1)
|
67 |
-
|
68 |
-
while single_bar_duration * bars < min_duration:
|
69 |
-
bars += 1
|
70 |
-
|
71 |
-
duration = single_bar_duration * bars
|
72 |
-
|
73 |
-
while duration > max_duration and bars > 1:
|
74 |
-
bars -= 1
|
75 |
-
duration = single_bar_duration * bars
|
76 |
-
|
77 |
-
return duration
|
78 |
-
|
79 |
-
@spaces.GPU(duration=60)
|
80 |
-
def generate_midi(seed, use_chords, chord_progression, bpm):
|
81 |
-
if seed == "":
|
82 |
-
seed = random.randint(1, 10000)
|
83 |
-
|
84 |
-
ml = MusicLangPredictor('musiclang/musiclang-v2')
|
85 |
-
|
86 |
-
try:
|
87 |
-
seed = int(seed)
|
88 |
-
except ValueError:
|
89 |
-
seed = random.randint(1, 10000)
|
90 |
-
|
91 |
-
nb_tokens = 1024
|
92 |
-
temperature = 0.9
|
93 |
-
top_p = 1.0
|
94 |
-
|
95 |
-
if use_chords and chord_progression.strip():
|
96 |
-
score = ml.predict_chords(
|
97 |
-
chord_progression,
|
98 |
-
time_signature=(4, 4),
|
99 |
-
temperature=temperature,
|
100 |
-
topp=top_p,
|
101 |
-
rng_seed=seed
|
102 |
-
)
|
103 |
-
else:
|
104 |
-
score = ml.predict(
|
105 |
-
nb_tokens=nb_tokens,
|
106 |
-
temperature=temperature,
|
107 |
-
topp=top_p,
|
108 |
-
rng_seed=seed
|
109 |
-
)
|
110 |
-
|
111 |
-
midi_filename = f"output_{seed}.mid"
|
112 |
-
wav_filename = midi_filename.replace(".mid", ".wav")
|
113 |
-
|
114 |
-
score.to_midi(midi_filename, tempo=bpm, time_signature=(4, 4))
|
115 |
-
|
116 |
-
subprocess.run(["fluidsynth", "-ni", "font.sf2", midi_filename, "-F", wav_filename, "-r", "44100"])
|
117 |
-
|
118 |
-
# Clean up temporary MIDI file
|
119 |
-
os.remove(midi_filename)
|
120 |
-
|
121 |
-
sample_rate = 44100 # Assuming fixed sample rate from fluidsynth command
|
122 |
-
return wav_filename
|
123 |
-
|
124 |
-
@spaces.GPU(duration=90)
|
125 |
-
def generate_music(wav_filename, prompt_duration, musicgen_model, num_iterations, bpm):
|
126 |
-
# Load the audio from the passed file path
|
127 |
-
song, sr = torchaudio.load(wav_filename)
|
128 |
-
song = song.to(device)
|
129 |
-
# Use the user-provided BPM value for duration calculation
|
130 |
-
duration = calculate_duration(bpm)
|
131 |
-
|
132 |
-
# Create slices from the song using the user-provided BPM value
|
133 |
-
slices = create_slices(song, sr, 35, bpm, num_slices=5)
|
134 |
-
|
135 |
-
# Load the model
|
136 |
-
model_name = musicgen_model.split(" ")[0]
|
137 |
-
model_continue = MusicGen.get_pretrained(model_name)
|
138 |
-
|
139 |
-
# Setting generation parameters
|
140 |
-
model_continue.set_generation_params(
|
141 |
-
use_sampling=True,
|
142 |
-
top_k=250,
|
143 |
-
top_p=0.0,
|
144 |
-
temperature=1.0,
|
145 |
-
duration=duration,
|
146 |
-
cfg_coef=3
|
147 |
-
)
|
148 |
-
|
149 |
-
all_audio_files = []
|
150 |
-
|
151 |
-
for i in range(num_iterations):
|
152 |
-
slice_idx = i % len(slices)
|
153 |
-
|
154 |
-
print(f"Running iteration {i + 1} using slice {slice_idx}...")
|
155 |
-
|
156 |
-
prompt_waveform = slices[slice_idx][..., :int(prompt_duration * sr)]
|
157 |
-
prompt_waveform = preprocess_audio(prompt_waveform)
|
158 |
-
|
159 |
-
output = model_continue.generate_continuation(prompt_waveform, prompt_sample_rate=sr, progress=True)
|
160 |
-
output = output.cpu() # Move the output tensor back to CPU
|
161 |
-
|
162 |
-
# Make sure the output tensor has at most 2 dimensions
|
163 |
-
if len(output.size()) > 2:
|
164 |
-
output = output.squeeze()
|
165 |
-
|
166 |
-
filename_without_extension = f'continue_{i}'
|
167 |
-
filename_with_extension = f'{filename_without_extension}.wav'
|
168 |
-
|
169 |
-
audio_write(filename_with_extension, output, model_continue.sample_rate, strategy="loudness", loudness_compressor=True)
|
170 |
-
all_audio_files.append(f'{filename_without_extension}.wav.wav') # Assuming the library appends an extra .wav
|
171 |
-
|
172 |
-
# Combine all audio files
|
173 |
-
combined_audio = AudioSegment.empty()
|
174 |
-
for filename in all_audio_files:
|
175 |
-
combined_audio += AudioSegment.from_wav(filename)
|
176 |
-
|
177 |
-
combined_audio_filename = f"combined_audio_{random.randint(1, 10000)}.mp3"
|
178 |
-
combined_audio.export(combined_audio_filename, format="mp3")
|
179 |
-
|
180 |
-
# Clean up temporary files
|
181 |
-
for filename in all_audio_files:
|
182 |
-
os.remove(filename)
|
183 |
-
|
184 |
-
return combined_audio_filename
|
185 |
-
|
186 |
-
@spaces.GPU(duration=90)
|
187 |
-
def continue_music(input_audio_path, prompt_duration, musicgen_model, num_iterations, bpm):
|
188 |
-
# Load the audio from the given file path
|
189 |
-
song, sr = torchaudio.load(input_audio_path)
|
190 |
-
song = song.to(device)
|
191 |
-
|
192 |
-
#
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
##
|
256 |
-
|
257 |
-
[<img src="https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png" alt="GitHub" width="20" style="vertical-align:middle">
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
"""
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
iface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from musiclang_predict import MusicLangPredictor
|
3 |
+
import random
|
4 |
+
import subprocess
|
5 |
+
import os
|
6 |
+
import torchaudio
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
from audiocraft.models import MusicGen
|
10 |
+
from audiocraft.data.audio import audio_write
|
11 |
+
from pydub import AudioSegment
|
12 |
+
import spaces
|
13 |
+
import tempfile
|
14 |
+
from pydub import AudioSegment
|
15 |
+
|
16 |
+
# Check if CUDA is available
|
17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
|
19 |
+
# Utility Functions
|
20 |
+
def peak_normalize(y, target_peak=0.97):
|
21 |
+
return target_peak * (y / np.max(np.abs(y)))
|
22 |
+
|
23 |
+
def rms_normalize(y, target_rms=0.05):
|
24 |
+
return y * (target_rms / np.sqrt(np.mean(y**2)))
|
25 |
+
|
26 |
+
def preprocess_audio(waveform):
|
27 |
+
waveform_np = waveform.cpu().squeeze().numpy() # Move to CPU before converting to NumPy
|
28 |
+
# processed_waveform_np = rms_normalize(peak_normalize(waveform_np))
|
29 |
+
return torch.from_numpy(waveform_np).unsqueeze(0).to(device)
|
30 |
+
|
31 |
+
def create_slices(song, sr, slice_duration, bpm, num_slices=5):
|
32 |
+
song_length = song.shape[-1] / sr
|
33 |
+
slices = []
|
34 |
+
|
35 |
+
# Ensure the first slice is from the beginning of the song
|
36 |
+
first_slice_waveform = song[..., :int(slice_duration * sr)]
|
37 |
+
slices.append(first_slice_waveform)
|
38 |
+
|
39 |
+
for i in range(1, num_slices):
|
40 |
+
possible_start_indices = list(range(int(slice_duration * sr), int(song_length * sr), int(4 * 60 / bpm * sr)))
|
41 |
+
if not possible_start_indices:
|
42 |
+
# If there are no valid start indices, duplicate the first slice
|
43 |
+
slices.append(first_slice_waveform)
|
44 |
+
continue
|
45 |
+
|
46 |
+
random_start = random.choice(possible_start_indices)
|
47 |
+
slice_end = random_start + int(slice_duration * sr)
|
48 |
+
|
49 |
+
if slice_end > song_length * sr:
|
50 |
+
# Wrap around to the beginning of the song
|
51 |
+
remaining_samples = int(slice_end - song_length * sr)
|
52 |
+
slice_waveform = torch.cat([song[..., random_start:], song[..., :remaining_samples]], dim=-1)
|
53 |
+
else:
|
54 |
+
slice_waveform = song[..., random_start:slice_end]
|
55 |
+
|
56 |
+
if len(slice_waveform.squeeze()) < int(slice_duration * sr):
|
57 |
+
additional_samples_needed = int(slice_duration * sr) - len(slice_waveform.squeeze())
|
58 |
+
slice_waveform = torch.cat([slice_waveform, song[..., :additional_samples_needed]], dim=-1)
|
59 |
+
|
60 |
+
slices.append(slice_waveform)
|
61 |
+
|
62 |
+
return slices
|
63 |
+
|
64 |
+
def calculate_duration(bpm, min_duration=29, max_duration=30):
|
65 |
+
single_bar_duration = 4 * 60 / bpm
|
66 |
+
bars = max(min_duration // single_bar_duration, 1)
|
67 |
+
|
68 |
+
while single_bar_duration * bars < min_duration:
|
69 |
+
bars += 1
|
70 |
+
|
71 |
+
duration = single_bar_duration * bars
|
72 |
+
|
73 |
+
while duration > max_duration and bars > 1:
|
74 |
+
bars -= 1
|
75 |
+
duration = single_bar_duration * bars
|
76 |
+
|
77 |
+
return duration
|
78 |
+
|
79 |
+
@spaces.GPU(duration=60)
|
80 |
+
def generate_midi(seed, use_chords, chord_progression, bpm):
|
81 |
+
if seed == "":
|
82 |
+
seed = random.randint(1, 10000)
|
83 |
+
|
84 |
+
ml = MusicLangPredictor('musiclang/musiclang-v2')
|
85 |
+
|
86 |
+
try:
|
87 |
+
seed = int(seed)
|
88 |
+
except ValueError:
|
89 |
+
seed = random.randint(1, 10000)
|
90 |
+
|
91 |
+
nb_tokens = 1024
|
92 |
+
temperature = 0.9
|
93 |
+
top_p = 1.0
|
94 |
+
|
95 |
+
if use_chords and chord_progression.strip():
|
96 |
+
score = ml.predict_chords(
|
97 |
+
chord_progression,
|
98 |
+
time_signature=(4, 4),
|
99 |
+
temperature=temperature,
|
100 |
+
topp=top_p,
|
101 |
+
rng_seed=seed
|
102 |
+
)
|
103 |
+
else:
|
104 |
+
score = ml.predict(
|
105 |
+
nb_tokens=nb_tokens,
|
106 |
+
temperature=temperature,
|
107 |
+
topp=top_p,
|
108 |
+
rng_seed=seed
|
109 |
+
)
|
110 |
+
|
111 |
+
midi_filename = f"output_{seed}.mid"
|
112 |
+
wav_filename = midi_filename.replace(".mid", ".wav")
|
113 |
+
|
114 |
+
score.to_midi(midi_filename, tempo=bpm, time_signature=(4, 4))
|
115 |
+
|
116 |
+
subprocess.run(["fluidsynth", "-ni", "font.sf2", midi_filename, "-F", wav_filename, "-r", "44100"])
|
117 |
+
|
118 |
+
# Clean up temporary MIDI file
|
119 |
+
os.remove(midi_filename)
|
120 |
+
|
121 |
+
sample_rate = 44100 # Assuming fixed sample rate from fluidsynth command
|
122 |
+
return wav_filename
|
123 |
+
|
124 |
+
@spaces.GPU(duration=90)
|
125 |
+
def generate_music(wav_filename, prompt_duration, musicgen_model, num_iterations, bpm):
|
126 |
+
# Load the audio from the passed file path
|
127 |
+
song, sr = torchaudio.load(wav_filename)
|
128 |
+
song = song.to(device)
|
129 |
+
# Use the user-provided BPM value for duration calculation
|
130 |
+
duration = calculate_duration(bpm)
|
131 |
+
|
132 |
+
# Create slices from the song using the user-provided BPM value
|
133 |
+
slices = create_slices(song, sr, 35, bpm, num_slices=5)
|
134 |
+
|
135 |
+
# Load the model
|
136 |
+
model_name = musicgen_model.split(" ")[0]
|
137 |
+
model_continue = MusicGen.get_pretrained(model_name)
|
138 |
+
|
139 |
+
# Setting generation parameters
|
140 |
+
model_continue.set_generation_params(
|
141 |
+
use_sampling=True,
|
142 |
+
top_k=250,
|
143 |
+
top_p=0.0,
|
144 |
+
temperature=1.0,
|
145 |
+
duration=duration,
|
146 |
+
cfg_coef=3
|
147 |
+
)
|
148 |
+
|
149 |
+
all_audio_files = []
|
150 |
+
|
151 |
+
for i in range(num_iterations):
|
152 |
+
slice_idx = i % len(slices)
|
153 |
+
|
154 |
+
print(f"Running iteration {i + 1} using slice {slice_idx}...")
|
155 |
+
|
156 |
+
prompt_waveform = slices[slice_idx][..., :int(prompt_duration * sr)]
|
157 |
+
prompt_waveform = preprocess_audio(prompt_waveform)
|
158 |
+
|
159 |
+
output = model_continue.generate_continuation(prompt_waveform, prompt_sample_rate=sr, progress=True)
|
160 |
+
output = output.cpu() # Move the output tensor back to CPU
|
161 |
+
|
162 |
+
# Make sure the output tensor has at most 2 dimensions
|
163 |
+
if len(output.size()) > 2:
|
164 |
+
output = output.squeeze()
|
165 |
+
|
166 |
+
filename_without_extension = f'continue_{i}'
|
167 |
+
filename_with_extension = f'{filename_without_extension}.wav'
|
168 |
+
|
169 |
+
audio_write(filename_with_extension, output, model_continue.sample_rate, strategy="loudness", loudness_compressor=True)
|
170 |
+
all_audio_files.append(f'{filename_without_extension}.wav.wav') # Assuming the library appends an extra .wav
|
171 |
+
|
172 |
+
# Combine all audio files
|
173 |
+
combined_audio = AudioSegment.empty()
|
174 |
+
for filename in all_audio_files:
|
175 |
+
combined_audio += AudioSegment.from_wav(filename)
|
176 |
+
|
177 |
+
combined_audio_filename = f"combined_audio_{random.randint(1, 10000)}.mp3"
|
178 |
+
combined_audio.export(combined_audio_filename, format="mp3")
|
179 |
+
|
180 |
+
# Clean up temporary files
|
181 |
+
for filename in all_audio_files:
|
182 |
+
os.remove(filename)
|
183 |
+
|
184 |
+
return combined_audio_filename
|
185 |
+
|
186 |
+
@spaces.GPU(duration=90)
|
187 |
+
def continue_music(input_audio_path, prompt_duration, musicgen_model, num_iterations, bpm):
|
188 |
+
# Load the audio from the given file path
|
189 |
+
song, sr = torchaudio.load(input_audio_path)
|
190 |
+
song = song.to(device)
|
191 |
+
|
192 |
+
# Load the model and set generation parameters
|
193 |
+
model_continue = MusicGen.get_pretrained(musicgen_model.split(" ")[0])
|
194 |
+
model_continue.set_generation_params(
|
195 |
+
use_sampling=True,
|
196 |
+
top_k=250,
|
197 |
+
top_p=0.0,
|
198 |
+
temperature=1.0,
|
199 |
+
duration=calculate_duration(bpm),
|
200 |
+
cfg_coef=3
|
201 |
+
)
|
202 |
+
|
203 |
+
original_audio = AudioSegment.from_mp3(input_audio_path)
|
204 |
+
current_audio = original_audio
|
205 |
+
|
206 |
+
file_paths_for_cleanup = [] # List to track generated file paths for cleanup
|
207 |
+
|
208 |
+
for i in range(num_iterations):
|
209 |
+
# Calculate the slice from the end of the current audio based on prompt_duration
|
210 |
+
num_samples = int(prompt_duration * sr)
|
211 |
+
if current_audio.duration_seconds * 1000 < prompt_duration * 1000:
|
212 |
+
raise ValueError("The prompt_duration is longer than the current audio length.")
|
213 |
+
|
214 |
+
start_time = current_audio.duration_seconds * 1000 - prompt_duration * 1000
|
215 |
+
prompt_audio = current_audio[start_time:]
|
216 |
+
|
217 |
+
# Convert the prompt audio to a PyTorch tensor
|
218 |
+
prompt_waveform, _ = torchaudio.load(io.BytesIO(prompt_audio.export(format="wav")))
|
219 |
+
prompt_waveform = prompt_waveform.to(device)
|
220 |
+
|
221 |
+
# Prepare the audio slice for generation
|
222 |
+
prompt_waveform = preprocess_audio(prompt_waveform)
|
223 |
+
|
224 |
+
output = model_continue.generate_continuation(prompt_waveform, prompt_sample_rate=sr, progress=True)
|
225 |
+
output = output.cpu() # Move the output tensor back to CPU
|
226 |
+
|
227 |
+
if len(output.size()) > 2:
|
228 |
+
output = output.squeeze()
|
229 |
+
|
230 |
+
filename_without_extension = f'continue_{i}'
|
231 |
+
filename_with_extension = f'{filename_without_extension}.wav'
|
232 |
+
correct_filename_extension = f'{filename_without_extension}.wav.wav' # Apply the workaround for audio_write
|
233 |
+
|
234 |
+
audio_write(filename_with_extension, output, model_continue.sample_rate, strategy="loudness", loudness_compressor=True)
|
235 |
+
generated_audio_segment = AudioSegment.from_wav(correct_filename_extension)
|
236 |
+
|
237 |
+
# Replace the prompt portion with the generated audio
|
238 |
+
current_audio = current_audio[:start_time] + generated_audio_segment
|
239 |
+
|
240 |
+
file_paths_for_cleanup.append(correct_filename_extension) # Add to cleanup list
|
241 |
+
|
242 |
+
combined_audio_filename = f"combined_audio_{random.randint(1, 10000)}.mp3"
|
243 |
+
current_audio.export(combined_audio_filename, format="mp3")
|
244 |
+
|
245 |
+
# Clean up temporary files using the list of file paths
|
246 |
+
for file_path in file_paths_for_cleanup:
|
247 |
+
os.remove(file_path)
|
248 |
+
|
249 |
+
return combined_audio_filename
|
250 |
+
|
251 |
+
|
252 |
+
|
253 |
+
# Define the expandable sections
|
254 |
+
musiclang_blurb = """
|
255 |
+
## musiclang
|
256 |
+
musiclang is a controllable ai midi model. it can generate midi sequences based on user-provided parameters, or unconditionally.
|
257 |
+
[<img src="https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png" alt="GitHub" width="20" style="vertical-align:middle"> musiclang github](https://github.com/MusicLang/musiclang_predict)
|
258 |
+
[<img src="https://huggingface.co/front/assets/huggingface_logo-noborder.svg" alt="Hugging Face" width="20" style="vertical-align:middle"> musiclang huggingface space](https://huggingface.co/spaces/musiclang/musiclang-predict)
|
259 |
+
"""
|
260 |
+
|
261 |
+
musicgen_blurb = """
|
262 |
+
## musicgen
|
263 |
+
musicgen is a transformer-based music model that generates audio. It can also do something called a continuation, which was initially meant to extend musicgen outputs beyond 30 seconds. it can be used with any input audio to produce surprising results.
|
264 |
+
[<img src="https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png" alt="GitHub" width="20" style="vertical-align:middle"> audiocraft github](https://github.com/facebookresearch/audiocraft)
|
265 |
+
visit https://thecollabagepatch.com/infinitepolo.mp3 or https://thecollabagepatch.com/audiocraft.mp3 to hear continuations in action.
|
266 |
+
see also https://youtube.com/@thecollabagepatch
|
267 |
+
"""
|
268 |
+
|
269 |
+
finetunes_blurb = """
|
270 |
+
## fine-tuned models
|
271 |
+
the fine-tunes hosted on the huggingface hub are provided collectively by the musicgen discord community. thanks to vanya, mj, hoenn, septicDNB and of course, lyra.
|
272 |
+
[<img src="https://cdn.iconscout.com/icon/free/png-256/discord-3691244-3073764.png" alt="Discord" width="20" style="vertical-align:middle"> musicgen discord](https://discord.gg/93kX8rGZ)
|
273 |
+
[<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" style="vertical-align:middle"> fine-tuning colab notebook by lyra](https://colab.research.google.com/drive/13tbcC3A42KlaUZ21qvUXd25SFLu8WIvb)
|
274 |
+
"""
|
275 |
+
|
276 |
+
# Create the Gradio interface
|
277 |
+
with gr.Blocks() as iface:
|
278 |
+
gr.Markdown("# the-slot-machine")
|
279 |
+
gr.Markdown("two ai's jamming. warning: outputs will be very strange, likely stupid, and possibly rad.")
|
280 |
+
gr.Markdown("this is a musical slot machine. using musiclang, we get a midi output. then, we let a musicgen model continue, semi-randomly, from different sections of the midi track. the slot machine combines em all at the end into something very bizarre. pick a number for the seed between 1 and 10k, or leave it blank to unlock the full rnjesus powers. if you wanna be lame, you can control the chord progression, prompt duration, musicgen model, number of iterations, and BPM.")
|
281 |
+
|
282 |
+
with gr.Accordion("more info", open=False):
|
283 |
+
gr.Markdown(musiclang_blurb)
|
284 |
+
gr.Markdown(musicgen_blurb)
|
285 |
+
gr.Markdown(finetunes_blurb)
|
286 |
+
|
287 |
+
with gr.Row():
|
288 |
+
with gr.Column():
|
289 |
+
seed = gr.Textbox(label="Seed (leave blank for random)", value="")
|
290 |
+
use_chords = gr.Checkbox(label="Control Chord Progression", value=False)
|
291 |
+
chord_progression = gr.Textbox(label="Chord Progression (e.g., Am CM Dm E7 Am)", visible=True)
|
292 |
+
bpm = gr.Slider(label="BPM", minimum=60, maximum=200, step=1, value=120)
|
293 |
+
generate_midi_button = gr.Button("Generate MIDI")
|
294 |
+
midi_audio = gr.Audio(label="Generated MIDI Audio", type="filepath") # Ensure this is set to handle file paths
|
295 |
+
|
296 |
+
with gr.Column():
|
297 |
+
prompt_duration = gr.Dropdown(label="Prompt Duration (seconds)", choices=list(range(1, 11)), value=5)
|
298 |
+
musicgen_model = gr.Dropdown(label="MusicGen Model", choices=[
|
299 |
+
"thepatch/vanya_ai_dnb_0.1 (small)",
|
300 |
+
"thepatch/budots_remix (small)",
|
301 |
+
"thepatch/PhonkV2 (small)",
|
302 |
+
"thepatch/bleeps-medium (medium)",
|
303 |
+
"thepatch/hoenn_lofi (large)"
|
304 |
+
], value="thepatch/vanya_ai_dnb_0.1 (small)")
|
305 |
+
num_iterations = gr.Slider(label="this does nothing rn", minimum=1, maximum=1, step=1, value=1)
|
306 |
+
generate_music_button = gr.Button("Generate Music")
|
307 |
+
output_audio = gr.Audio(label="Generated Music", type="filepath")
|
308 |
+
continue_button = gr.Button("Continue Generating Music")
|
309 |
+
continue_output_audio = gr.Audio(label="Continued Music Output", type="filepath")
|
310 |
+
|
311 |
+
# Connecting the components
|
312 |
+
generate_midi_button.click(generate_midi, inputs=[seed, use_chords, chord_progression, bpm], outputs=[midi_audio])
|
313 |
+
generate_music_button.click(generate_music, inputs=[midi_audio, prompt_duration, musicgen_model, num_iterations, bpm], outputs=[output_audio])
|
314 |
+
continue_button.click(continue_music, inputs=[output_audio, prompt_duration, musicgen_model, num_iterations, bpm], outputs=continue_output_audio)
|
315 |
+
|
316 |
iface.launch()
|