import gradio as gr from musiclang_predict import MusicLangPredictor import random import subprocess import os import torchaudio import torch import numpy as np from audiocraft.models import MusicGen from audiocraft.data.audio import audio_write from pydub import AudioSegment import spaces # Check if CUDA is available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Utility Functions def peak_normalize(y, target_peak=0.97): return target_peak * (y / np.max(np.abs(y))) def rms_normalize(y, target_rms=0.05): return y * (target_rms / np.sqrt(np.mean(y**2))) def preprocess_audio(waveform): waveform_np = waveform.cpu().squeeze().numpy() # Move to CPU before converting to NumPy # processed_waveform_np = rms_normalize(peak_normalize(waveform_np)) return torch.from_numpy(waveform_np).unsqueeze(0).to(device) def create_slices(song, sr, slice_duration, bpm, num_slices=5): song_length = song.shape[-1] / sr slices = [] # Ensure the first slice is from the beginning of the song first_slice_waveform = song[..., :int(slice_duration * sr)] slices.append(first_slice_waveform) for i in range(1, num_slices): possible_start_indices = list(range(int(slice_duration * sr), int(song_length * sr), int(4 * 60 / bpm * sr))) if not possible_start_indices: # If there are no valid start indices, duplicate the first slice slices.append(first_slice_waveform) continue random_start = random.choice(possible_start_indices) slice_end = random_start + int(slice_duration * sr) if slice_end > song_length * sr: # Wrap around to the beginning of the song remaining_samples = int(slice_end - song_length * sr) slice_waveform = torch.cat([song[..., random_start:], song[..., :remaining_samples]], dim=-1) else: slice_waveform = song[..., random_start:slice_end] if len(slice_waveform.squeeze()) < int(slice_duration * sr): additional_samples_needed = int(slice_duration * sr) - len(slice_waveform.squeeze()) slice_waveform = torch.cat([slice_waveform, song[..., :additional_samples_needed]], dim=-1) slices.append(slice_waveform) return slices def calculate_duration(bpm, min_duration=29, max_duration=30): single_bar_duration = 4 * 60 / bpm bars = max(min_duration // single_bar_duration, 1) while single_bar_duration * bars < min_duration: bars += 1 duration = single_bar_duration * bars while duration > max_duration and bars > 1: bars -= 1 duration = single_bar_duration * bars return duration @spaces.GPU(duration=60) def generate_midi(seed, use_chords, chord_progression, bpm): if seed == "": seed = random.randint(1, 10000) ml = MusicLangPredictor('musiclang/musiclang-v2') try: seed = int(seed) except ValueError: seed = random.randint(1, 10000) nb_tokens = 1024 temperature = 0.9 top_p = 1.0 if use_chords and chord_progression.strip(): score = ml.predict_chords( chord_progression, time_signature=(4, 4), temperature=temperature, topp=top_p, rng_seed=seed ) else: score = ml.predict( nb_tokens=nb_tokens, temperature=temperature, topp=top_p, rng_seed=seed ) midi_filename = f"output_{seed}.mid" wav_filename = midi_filename.replace(".mid", ".wav") score.to_midi(midi_filename, tempo=bpm, time_signature=(4, 4)) subprocess.run(["fluidsynth", "-ni", "font.sf2", midi_filename, "-F", wav_filename, "-r", "44100"]) # Clean up temporary MIDI file os.remove(midi_filename) return wav_filename @spaces.GPU(duration=120) def generate_music(wav_filename, prompt_duration, musicgen_model, num_iterations, bpm): # Load the generated audio song, sr = torchaudio.load(wav_filename) song = song.to(device) # Use the user-provided BPM value for duration calculation duration = calculate_duration(bpm) # Create slices from the song using the user-provided BPM value slices = create_slices(song, sr, 35, bpm, num_slices=5) # Load the model model_name = musicgen_model.split(" ")[0] model_continue = MusicGen.get_pretrained(model_name) # Setting generation parameters model_continue.set_generation_params( use_sampling=True, top_k=250, top_p=0.0, temperature=1.0, duration=duration, cfg_coef=3 ) all_audio_files = [] for i in range(num_iterations): slice_idx = i % len(slices) print(f"Running iteration {i + 1} using slice {slice_idx}...") prompt_waveform = slices[slice_idx][..., :int(prompt_duration * sr)] prompt_waveform = preprocess_audio(prompt_waveform) output = model_continue.generate_continuation(prompt_waveform, prompt_sample_rate=sr, progress=True) output = output.cpu() # Move the output tensor back to CPU # Make sure the output tensor has at most 2 dimensions if len(output.size()) > 2: output = output.squeeze() filename_without_extension = f'continue_{i}' filename_with_extension = f'{filename_without_extension}.wav' audio_write(filename_with_extension, output, model_continue.sample_rate, strategy="loudness", loudness_compressor=True) all_audio_files.append(f'{filename_without_extension}.wav.wav') # Assuming the library appends an extra .wav # Combine all audio files combined_audio = AudioSegment.empty() for filename in all_audio_files: combined_audio += AudioSegment.from_wav(filename) combined_audio_filename = f"combined_audio_{random.randint(1, 10000)}.mp3" combined_audio.export(combined_audio_filename, format="mp3") # Clean up temporary files os.remove(wav_filename) for filename in all_audio_files: os.remove(filename) return combined_audio_filename # Define the expandable sections musiclang_blurb = """ ## musiclang musiclang is a controllable ai midi model. it can generate midi sequences based on user-provided parameters, or unconditionally. [GitHub musiclang github](https://github.com/MusicLang/musiclang_predict) [Hugging Face musiclang huggingface space](https://huggingface.co/spaces/musiclang/musiclang-predict) """ musicgen_blurb = """ ## musicgen musicgen is a transformer-based music model that generates audio. It can also do something called a continuation, which was initially meant to extend musicgen outputs beyond 30 seconds. it can be used with any input audio to produce surprising results. [GitHub audiocraft github](https://github.com/facebookresearch/audiocraft) visit https://thecollabagepatch.com/infinitepolo.mp3 or https://thecollabagepatch.com/audiocraft.mp3 to hear continuations in action. see also https://youtube.com/@thecollabagepatch """ finetunes_blurb = """ ## fine-tuned models the fine-tunes hosted on the huggingface hub are provided collectively by the musicgen discord community. thanks to vanya, mj, hoenn, septicDNB and of course, lyra. [Discord musicgen discord](https://discord.gg/93kX8rGZ) [Open In Colab fine-tuning colab notebook by lyra](https://colab.research.google.com/drive/13tbcC3A42KlaUZ21qvUXd25SFLu8WIvb) """ # Create the Gradio interface with gr.Blocks() as iface: gr.Markdown("# the-slot-machine") gr.Markdown("two ai's jamming. warning: outputs will be very strange, likely stupid, and possibly rad.") gr.Markdown("this is a musical slot machine. using musiclang, we get a midi output. then, we let a musicgen model continue, semi-randomly, from different sections of the midi track. the slot machine combines em all at the end into something very bizarre. pick a number for the seed between 1 and 10k, or leave it blank to unlock the full rnjesus powers. if you wanna be lame, you can control the chord progression, prompt duration, musicgen model, number of iterations, and BPM.") with gr.Accordion("more info", open=False): gr.Markdown(musiclang_blurb) gr.Markdown(musicgen_blurb) gr.Markdown(finetunes_blurb) with gr.Row(): with gr.Column(): seed = gr.Textbox(label="seed (leave blank for random)", value="") use_chords = gr.Checkbox(label="control chord progression", value=False) chord_progression = gr.Textbox(label="chord progression (e.g., Am CM Dm E7 Am)", visible=True) bpm = gr.Slider(label="BPM", minimum=60, maximum=200, step=1, value=110) generate_midi_button = gr.Button("Generate MIDI") midi_audio = gr.Audio(label="Generated MIDI Audio") with gr.Column(): prompt_duration = gr.Dropdown(label="prompt duration (seconds)", choices=list(range(1, 11)), value=7) musicgen_models = [ "thepatch/vanya_ai_dnb_0.1 (small)", "thepatch/budots_remix (small)", "thepatch/PhonkV2 (small)", "thepatch/bleeps-medium (medium)", "thepatch/hoenn_lofi (large)" ] musicgen_model = gr.Dropdown(label="musicGen model", choices=musicgen_models, value=musicgen_models[0]) num_iterations = gr.Slider(label="number of iterations", minimum=1, maximum=3, step=1, value=3) generate_music_button = gr.Button("Generate Music") output_audio = gr.Audio(label="Generated Music") generate_midi_button.click(generate_midi, inputs=[seed, use_chords, chord_progression, bpm], outputs=midi_audio) generate_music_button.click(generate_music, inputs=[midi_audio, prompt_duration, musicgen_model, num_iterations, bpm], outputs=output_audio) iface.launch()