import random import gradio as gr import numpy as np from elevenlabs import voices, generate, set_api_key, UnauthenticatedRateLimitError def pad_buffer(audio): # Pad buffer to multiple of 2 bytes buffer_size = len(audio) element_size = np.dtype(np.int16).itemsize if buffer_size % element_size != 0: audio = audio + b'\0' * (element_size - (buffer_size % element_size)) return audio def generate_voice(text, voice_name): try: audio = generate( text[:250], # Limit to 250 characters voice=voice_name, model="eleven_multilingual_v2" ) return (44100, np.frombuffer(pad_buffer(audio), dtype=np.int16)) except UnauthenticatedRateLimitError as e: raise gr.Error("Thanks for trying out ElevenLabs TTS! You've reached the free tier limit. Please provide an API key to continue.") except Exception as e: raise gr.Error(e) description = """ Here's a demonstration of the world's most advanced TTS systems, created by ElevenLabs. 🎉 I wanted to experiment with this amazing technology for the Italian language 🇮🇹, and I'm excited to share its capabilities with you! Eleven Multilingual V2 is a single foundational model supporting an impressive 28 languages, including English 🇬🇧, Chinese 🇨🇳, Spanish 🇪🇸, Hindi 🇮🇳, Portuguese 🇵🇹, French 🇫🇷, German 🇩🇪, Japanese 🇯🇵, Arabic 🇸🇦, Korean 🇰🇷, Indonesian 🇮🇩, Italian 🇮🇹, Dutch 🇳🇱, Turkish 🇹🇷, Polish 🇵🇱, Swedish 🇸🇪, Filipino 🇵🇭, Malay 🇲🇾, Romanian 🇷🇴, Ukrainian 🇺🇦, Greek 🇬🇷, Czech 🇨🇿, Danish 🇩🇰, Finnish 🇫🇮, Bulgarian 🇧🇬, Croatian 🇭🇷, Slovak 🇸🇰, and Tamil 🇱🇰. 🌍 Sign up on ElevenLabs to get fast access to long-form generation, voice cloning, API keys, and more! 🚀 """ with gr.Blocks() as block: gr.Markdown('[ ![ElevenLabs](https://user-images.githubusercontent.com/12028621/262629275-4f85c9cf-85b6-435e-ab50-5b8c7c4e9dd2.png) ](https://elevenlabs.io)') gr.Markdown(description) input_text = gr.Textbox( label="Input Text (250 characters max)", lines=2, value="Ciao, mi chiamo Sab, sono un ragazzo italiano appassionato di AI e nuove tecnologie!", elem_id="input_text" ) all_voices = voices() input_voice = gr.Dropdown( [ voice.name for voice in all_voices ], value="Callum", label="Voice", elem_id="input_voice" ) run_button = gr.Button( value="Generate Voice", ) out_audio = gr.Audio( label="Generated Voice", type="numpy", elem_id="out_audio", format="mp3" ) inputs = [input_text, input_voice] outputs = [out_audio] run_button.click( fn=generate_voice, inputs=inputs, outputs=outputs, queue=True ) block.launch(debug=False, show_error=True, share=True)