pyramid-flow-hf / pyramid_dit /modeling_pyramid_mmdit.py
multimodalart's picture
Upload 33 files
f0533a5 verified
raw
history blame
23 kB
import torch
import torch.nn as nn
import os
import torch.nn.functional as F
from einops import rearrange
from diffusers.utils.torch_utils import randn_tensor
from diffusers.models.modeling_utils import ModelMixin
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import is_torch_version
from typing import Any, Callable, Dict, List, Optional, Union
from tqdm import tqdm
from .modeling_embedding import PatchEmbed3D, CombinedTimestepConditionEmbeddings
from .modeling_normalization import AdaLayerNormContinuous
from .modeling_mmdit_block import JointTransformerBlock
from trainer_misc import (
is_sequence_parallel_initialized,
get_sequence_parallel_group,
get_sequence_parallel_world_size,
get_sequence_parallel_rank,
all_to_all,
)
from IPython import embed
def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor:
assert dim % 2 == 0, "The dimension must be even."
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
omega = 1.0 / (theta**scale)
batch_size, seq_length = pos.shape
out = torch.einsum("...n,d->...nd", pos, omega)
cos_out = torch.cos(out)
sin_out = torch.sin(out)
stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
out = stacked_out.view(batch_size, -1, dim // 2, 2, 2)
return out.float()
class EmbedNDRoPE(nn.Module):
def __init__(self, dim: int, theta: int, axes_dim: List[int]):
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: torch.Tensor) -> torch.Tensor:
n_axes = ids.shape[-1]
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
return emb.unsqueeze(2)
class PyramidDiffusionMMDiT(ModelMixin, ConfigMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
sample_size: int = 128,
patch_size: int = 2,
in_channels: int = 16,
num_layers: int = 24,
attention_head_dim: int = 64,
num_attention_heads: int = 24,
caption_projection_dim: int = 1152,
pooled_projection_dim: int = 2048,
pos_embed_max_size: int = 192,
max_num_frames: int = 200,
qk_norm: str = 'rms_norm',
pos_embed_type: str = 'rope',
temp_pos_embed_type: str = 'sincos',
joint_attention_dim: int = 4096,
use_gradient_checkpointing: bool = False,
use_flash_attn: bool = True,
use_temporal_causal: bool = False,
use_t5_mask: bool = False,
add_temp_pos_embed: bool = False,
interp_condition_pos: bool = False,
):
super().__init__()
self.out_channels = in_channels
self.inner_dim = num_attention_heads * attention_head_dim
assert temp_pos_embed_type in ['rope', 'sincos']
# The input latent embeder, using the name pos_embed to remain the same with SD#
self.pos_embed = PatchEmbed3D(
height=sample_size,
width=sample_size,
patch_size=patch_size,
in_channels=in_channels,
embed_dim=self.inner_dim,
pos_embed_max_size=pos_embed_max_size, # hard-code for now.
max_num_frames=max_num_frames,
pos_embed_type=pos_embed_type,
temp_pos_embed_type=temp_pos_embed_type,
add_temp_pos_embed=add_temp_pos_embed,
interp_condition_pos=interp_condition_pos,
)
# The RoPE EMbedding
if pos_embed_type == 'rope':
self.rope_embed = EmbedNDRoPE(self.inner_dim, 10000, axes_dim=[16, 24, 24])
else:
self.rope_embed = None
if temp_pos_embed_type == 'rope':
self.temp_rope_embed = EmbedNDRoPE(self.inner_dim, 10000, axes_dim=[attention_head_dim])
else:
self.temp_rope_embed = None
self.time_text_embed = CombinedTimestepConditionEmbeddings(
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim,
)
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.config.caption_projection_dim)
self.transformer_blocks = nn.ModuleList(
[
JointTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=self.inner_dim,
qk_norm=qk_norm,
context_pre_only=i == num_layers - 1,
use_flash_attn=use_flash_attn,
)
for i in range(num_layers)
]
)
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
self.gradient_checkpointing = use_gradient_checkpointing
self.patch_size = patch_size
self.use_flash_attn = use_flash_attn
self.use_temporal_causal = use_temporal_causal
self.pos_embed_type = pos_embed_type
self.temp_pos_embed_type = temp_pos_embed_type
self.add_temp_pos_embed = add_temp_pos_embed
if self.use_temporal_causal:
print("Using temporal causal attention")
assert self.use_flash_attn is False, "The flash attention does not support temporal causal"
if interp_condition_pos:
print("We interp the position embedding of condition latents")
# init weights
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, (nn.Linear, nn.Conv2d, nn.Conv3d)):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.pos_embed.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.pos_embed.proj.bias, 0)
# Initialize all the conditioning to normal init
nn.init.normal_(self.time_text_embed.timestep_embedder.linear_1.weight, std=0.02)
nn.init.normal_(self.time_text_embed.timestep_embedder.linear_2.weight, std=0.02)
nn.init.normal_(self.time_text_embed.text_embedder.linear_1.weight, std=0.02)
nn.init.normal_(self.time_text_embed.text_embedder.linear_2.weight, std=0.02)
nn.init.normal_(self.context_embedder.weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.transformer_blocks:
nn.init.constant_(block.norm1.linear.weight, 0)
nn.init.constant_(block.norm1.linear.bias, 0)
nn.init.constant_(block.norm1_context.linear.weight, 0)
nn.init.constant_(block.norm1_context.linear.bias, 0)
# Zero-out output layers:
nn.init.constant_(self.norm_out.linear.weight, 0)
nn.init.constant_(self.norm_out.linear.bias, 0)
nn.init.constant_(self.proj_out.weight, 0)
nn.init.constant_(self.proj_out.bias, 0)
@torch.no_grad()
def _prepare_latent_image_ids(self, batch_size, temp, height, width, device):
latent_image_ids = torch.zeros(temp, height, width, 3)
latent_image_ids[..., 0] = latent_image_ids[..., 0] + torch.arange(temp)[:, None, None]
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[None, :, None]
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, None, :]
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1, 1)
latent_image_ids = rearrange(latent_image_ids, 'b t h w c -> b (t h w) c')
return latent_image_ids.to(device=device)
@torch.no_grad()
def _prepare_pyramid_latent_image_ids(self, batch_size, temp_list, height_list, width_list, device):
base_width = width_list[-1]; base_height = height_list[-1]
assert base_width == max(width_list)
assert base_height == max(height_list)
image_ids_list = []
for temp, height, width in zip(temp_list, height_list, width_list):
latent_image_ids = torch.zeros(temp, height, width, 3)
if height != base_height:
height_pos = F.interpolate(torch.arange(base_height)[None, None, :].float(), height, mode='linear').squeeze(0, 1)
else:
height_pos = torch.arange(base_height).float()
if width != base_width:
width_pos = F.interpolate(torch.arange(base_width)[None, None, :].float(), width, mode='linear').squeeze(0, 1)
else:
width_pos = torch.arange(base_width).float()
latent_image_ids[..., 0] = latent_image_ids[..., 0] + torch.arange(temp)[:, None, None]
latent_image_ids[..., 1] = latent_image_ids[..., 1] + height_pos[None, :, None]
latent_image_ids[..., 2] = latent_image_ids[..., 2] + width_pos[None, None, :]
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1, 1)
latent_image_ids = rearrange(latent_image_ids, 'b t h w c -> b (t h w) c').to(device)
image_ids_list.append(latent_image_ids)
return image_ids_list
@torch.no_grad()
def _prepare_temporal_rope_ids(self, batch_size, temp, height, width, device, start_time_stamp=0):
latent_image_ids = torch.zeros(temp, height, width, 1)
latent_image_ids[..., 0] = latent_image_ids[..., 0] + torch.arange(start_time_stamp, start_time_stamp + temp)[:, None, None]
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1, 1)
latent_image_ids = rearrange(latent_image_ids, 'b t h w c -> b (t h w) c')
return latent_image_ids.to(device=device)
@torch.no_grad()
def _prepare_pyramid_temporal_rope_ids(self, sample, batch_size, device):
image_ids_list = []
for i_b, sample_ in enumerate(sample):
if not isinstance(sample_, list):
sample_ = [sample_]
cur_image_ids = []
start_time_stamp = 0
for clip_ in sample_:
_, _, temp, height, width = clip_.shape
height = height // self.patch_size
width = width // self.patch_size
cur_image_ids.append(self._prepare_temporal_rope_ids(batch_size, temp, height, width, device, start_time_stamp=start_time_stamp))
start_time_stamp += temp
cur_image_ids = torch.cat(cur_image_ids, dim=1)
image_ids_list.append(cur_image_ids)
return image_ids_list
def merge_input(self, sample, encoder_hidden_length, encoder_attention_mask):
"""
Merge the input video with different resolutions into one sequence
Sample: From low resolution to high resolution
"""
if isinstance(sample[0], list):
device = sample[0][-1].device
pad_batch_size = sample[0][-1].shape[0]
else:
device = sample[0].device
pad_batch_size = sample[0].shape[0]
num_stages = len(sample)
height_list = [];width_list = [];temp_list = []
trainable_token_list = []
for i_b, sample_ in enumerate(sample):
if isinstance(sample_, list):
sample_ = sample_[-1]
_, _, temp, height, width = sample_.shape
height = height // self.patch_size
width = width // self.patch_size
temp_list.append(temp)
height_list.append(height)
width_list.append(width)
trainable_token_list.append(height * width * temp)
# prepare the RoPE embedding if needed
if self.pos_embed_type == 'rope':
# TODO: support the 3D Rope for video
raise NotImplementedError("Not compatible with video generation now")
text_ids = torch.zeros(pad_batch_size, encoder_hidden_length, 3).to(device=device)
image_ids_list = self._prepare_pyramid_latent_image_ids(pad_batch_size, temp_list, height_list, width_list, device)
input_ids_list = [torch.cat([text_ids, image_ids], dim=1) for image_ids in image_ids_list]
image_rotary_emb = [self.rope_embed(input_ids) for input_ids in input_ids_list] # [bs, seq_len, 1, head_dim // 2, 2, 2]
else:
if self.temp_pos_embed_type == 'rope' and self.add_temp_pos_embed:
image_ids_list = self._prepare_pyramid_temporal_rope_ids(sample, pad_batch_size, device)
text_ids = torch.zeros(pad_batch_size, encoder_attention_mask.shape[1], 1).to(device=device)
input_ids_list = [torch.cat([text_ids, image_ids], dim=1) for image_ids in image_ids_list]
image_rotary_emb = [self.temp_rope_embed(input_ids) for input_ids in input_ids_list] # [bs, seq_len, 1, head_dim // 2, 2, 2]
if is_sequence_parallel_initialized():
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
image_rotary_emb = [all_to_all(x_.repeat(1, 1, sp_group_size, 1, 1, 1), sp_group, sp_group_size, scatter_dim=2, gather_dim=0) for x_ in image_rotary_emb]
input_ids_list = [all_to_all(input_ids.repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0) for input_ids in input_ids_list]
else:
image_rotary_emb = None
hidden_states = self.pos_embed(sample) # hidden states is a list of [b c t h w] b = real_b // num_stages
hidden_length = []
for i_b in range(num_stages):
hidden_length.append(hidden_states[i_b].shape[1])
# prepare the attention mask
if self.use_flash_attn:
attention_mask = None
indices_list = []
for i_p, length in enumerate(hidden_length):
pad_attention_mask = torch.ones((pad_batch_size, length), dtype=encoder_attention_mask.dtype).to(device)
pad_attention_mask = torch.cat([encoder_attention_mask[i_p::num_stages], pad_attention_mask], dim=1)
if is_sequence_parallel_initialized():
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
pad_attention_mask = all_to_all(pad_attention_mask.unsqueeze(2).repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0)
pad_attention_mask = pad_attention_mask.squeeze(2)
seqlens_in_batch = pad_attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(pad_attention_mask.flatten(), as_tuple=False).flatten()
indices_list.append(
{
'indices': indices,
'seqlens_in_batch': seqlens_in_batch,
}
)
encoder_attention_mask = indices_list
else:
assert encoder_attention_mask.shape[1] == encoder_hidden_length
real_batch_size = encoder_attention_mask.shape[0]
# prepare text ids
text_ids = torch.arange(1, real_batch_size + 1, dtype=encoder_attention_mask.dtype).unsqueeze(1).repeat(1, encoder_hidden_length)
text_ids = text_ids.to(device)
text_ids[encoder_attention_mask == 0] = 0
# prepare image ids
image_ids = torch.arange(1, real_batch_size + 1, dtype=encoder_attention_mask.dtype).unsqueeze(1).repeat(1, max(hidden_length))
image_ids = image_ids.to(device)
image_ids_list = []
for i_p, length in enumerate(hidden_length):
image_ids_list.append(image_ids[i_p::num_stages][:, :length])
if is_sequence_parallel_initialized():
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
text_ids = all_to_all(text_ids.unsqueeze(2).repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0).squeeze(2)
image_ids_list = [all_to_all(image_ids_.unsqueeze(2).repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0).squeeze(2) for image_ids_ in image_ids_list]
attention_mask = []
for i_p in range(len(hidden_length)):
image_ids = image_ids_list[i_p]
token_ids = torch.cat([text_ids[i_p::num_stages], image_ids], dim=1)
stage_attention_mask = rearrange(token_ids, 'b i -> b 1 i 1') == rearrange(token_ids, 'b j -> b 1 1 j') # [bs, 1, q_len, k_len]
if self.use_temporal_causal:
input_order_ids = input_ids_list[i_p].squeeze(2)
temporal_causal_mask = rearrange(input_order_ids, 'b i -> b 1 i 1') >= rearrange(input_order_ids, 'b j -> b 1 1 j')
stage_attention_mask = stage_attention_mask & temporal_causal_mask
attention_mask.append(stage_attention_mask)
return hidden_states, hidden_length, temp_list, height_list, width_list, trainable_token_list, encoder_attention_mask, attention_mask, image_rotary_emb
def split_output(self, batch_hidden_states, hidden_length, temps, heights, widths, trainable_token_list):
# To split the hidden states
batch_size = batch_hidden_states.shape[0]
output_hidden_list = []
batch_hidden_states = torch.split(batch_hidden_states, hidden_length, dim=1)
if is_sequence_parallel_initialized():
sp_group_size = get_sequence_parallel_world_size()
batch_size = batch_size // sp_group_size
for i_p, length in enumerate(hidden_length):
width, height, temp = widths[i_p], heights[i_p], temps[i_p]
trainable_token_num = trainable_token_list[i_p]
hidden_states = batch_hidden_states[i_p]
if is_sequence_parallel_initialized():
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
hidden_states = all_to_all(hidden_states, sp_group, sp_group_size, scatter_dim=0, gather_dim=1)
# only the trainable token are taking part in loss computation
hidden_states = hidden_states[:, -trainable_token_num:]
# unpatchify
hidden_states = hidden_states.reshape(
shape=(batch_size, temp, height, width, self.patch_size, self.patch_size, self.out_channels)
)
hidden_states = rearrange(hidden_states, "b t h w p1 p2 c -> b t (h p1) (w p2) c")
hidden_states = rearrange(hidden_states, "b t h w c -> b c t h w")
output_hidden_list.append(hidden_states)
return output_hidden_list
def forward(
self,
sample: torch.FloatTensor, # [num_stages]
encoder_hidden_states: torch.FloatTensor = None,
encoder_attention_mask: torch.FloatTensor = None,
pooled_projections: torch.FloatTensor = None,
timestep_ratio: torch.FloatTensor = None,
):
# Get the timestep embedding
temb = self.time_text_embed(timestep_ratio, pooled_projections)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
encoder_hidden_length = encoder_hidden_states.shape[1]
# Get the input sequence
hidden_states, hidden_length, temps, heights, widths, trainable_token_list, encoder_attention_mask, \
attention_mask, image_rotary_emb = self.merge_input(sample, encoder_hidden_length, encoder_attention_mask)
# split the long latents if necessary
if is_sequence_parallel_initialized():
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
# sync the input hidden states
batch_hidden_states = []
for i_p, hidden_states_ in enumerate(hidden_states):
assert hidden_states_.shape[1] % sp_group_size == 0, "The sequence length should be divided by sequence parallel size"
hidden_states_ = all_to_all(hidden_states_, sp_group, sp_group_size, scatter_dim=1, gather_dim=0)
hidden_length[i_p] = hidden_length[i_p] // sp_group_size
batch_hidden_states.append(hidden_states_)
# sync the encoder hidden states
hidden_states = torch.cat(batch_hidden_states, dim=1)
encoder_hidden_states = all_to_all(encoder_hidden_states, sp_group, sp_group_size, scatter_dim=1, gather_dim=0)
temb = all_to_all(temb.unsqueeze(1).repeat(1, sp_group_size, 1), sp_group, sp_group_size, scatter_dim=1, gather_dim=0)
temb = temb.squeeze(1)
else:
hidden_states = torch.cat(hidden_states, dim=1)
# print(hidden_length)
for i_b, block in enumerate(self.transformer_blocks):
if self.training and self.gradient_checkpointing and (i_b >= 2):
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
encoder_attention_mask,
temb,
attention_mask,
hidden_length,
image_rotary_emb,
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
temb=temb,
attention_mask=attention_mask,
hidden_length=hidden_length,
image_rotary_emb=image_rotary_emb,
)
hidden_states = self.norm_out(hidden_states, temb, hidden_length=hidden_length)
hidden_states = self.proj_out(hidden_states)
output = self.split_output(hidden_states, hidden_length, temps, heights, widths, trainable_token_list)
return output