Spaces:
Runtime error
Runtime error
import torch, torchvision | |
from torchvision import transforms | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
from pytorch_grad_cam import GradCAM | |
from resnet import ResNet18 | |
import gradio as gr | |
model = ResNet18() | |
model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')), strict=False) | |
def inference(input_img, transparency, target_layer_number): | |
transform = transforms.ToTensor() | |
input_img = transform(input_img) | |
input_img = input_img | |
input_img = input_img.unsqueeze(0) | |
outputs = model(input_img) | |
_, prediction = torch.max(outputs, 1) | |
target_layers = [model.layer2[target_layer_number]] | |
cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False) | |
grayscale_cam = cam(input_tensor=input_img, targets=None) | |
grayscale_cam = grayscale_cam[0, :] | |
img = input_img.squeeze(0) | |
img = inv_normalize(img) | |
rgb_img = np.transpose(img, (1, 2, 0)) | |
rgb_img = rgb_img.numpy() | |
visualization = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True, image_weight=transparency) | |
return classes[prediction[0].item()], visualization | |
demo = gr.Interface(inference, [gr.Image(shape=(32, 32)), gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"), gr.Slider(-5, -1, value = -2, label="Which Layer?")], ["text", gr.Image(shape=(32, 32)).style(width=128, height=128)]) | |
demo.launch() |