theschoolofai commited on
Commit
4501c57
·
1 Parent(s): 43a409b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -2
app.py CHANGED
@@ -20,6 +20,7 @@ classes = ('plane', 'car', 'bird', 'cat', 'deer',
20
 
21
  def inference(input_img, transparency = 0.5, target_layer_number = -1):
22
  transform = transforms.ToTensor()
 
23
  input_img = transform(input_img)
24
  input_img = input_img
25
  input_img = input_img.unsqueeze(0)
@@ -33,12 +34,12 @@ def inference(input_img, transparency = 0.5, target_layer_number = -1):
33
  img = inv_normalize(img)
34
  rgb_img = np.transpose(img, (1, 2, 0))
35
  rgb_img = rgb_img.numpy()
36
- visualization = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True, image_weight=transparency)
37
  return classes[prediction[0].item()], visualization
38
 
39
  title = "CIFAR10 trained on ResNet18 Model with GradCAM"
40
  description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results"
41
- examples = [["cat.jpg", "dog.jpg"]]
42
  demo = gr.Interface(
43
  inference,
44
  inputs = [gr.Image(shape=(32, 32), label="Input Image"), gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"), gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")],
 
20
 
21
  def inference(input_img, transparency = 0.5, target_layer_number = -1):
22
  transform = transforms.ToTensor()
23
+ org_img = input_img
24
  input_img = transform(input_img)
25
  input_img = input_img
26
  input_img = input_img.unsqueeze(0)
 
34
  img = inv_normalize(img)
35
  rgb_img = np.transpose(img, (1, 2, 0))
36
  rgb_img = rgb_img.numpy()
37
+ visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency)
38
  return classes[prediction[0].item()], visualization
39
 
40
  title = "CIFAR10 trained on ResNet18 Model with GradCAM"
41
  description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results"
42
+ examples = [["cat.jpg", 0.5, -1], ["dog.jpg", 0.5, -1]]
43
  demo = gr.Interface(
44
  inference,
45
  inputs = [gr.Image(shape=(32, 32), label="Input Image"), gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"), gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")],