theschoolofai commited on
Commit
81dfb50
·
1 Parent(s): 92c266a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -1
app.py CHANGED
@@ -10,6 +10,11 @@ import gradio as gr
10
  model = ResNet18()
11
  model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')), strict=False)
12
 
 
 
 
 
 
13
  def inference(input_img, transparency, target_layer_number):
14
  transform = transforms.ToTensor()
15
  input_img = transform(input_img)
@@ -28,5 +33,5 @@ def inference(input_img, transparency, target_layer_number):
28
  visualization = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True, image_weight=transparency)
29
  return classes[prediction[0].item()], visualization
30
 
31
- demo = gr.Interface(inference, [gr.Image(shape=(32, 32)), gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"), gr.Slider(-5, -1, value = -2, label="Which Layer?")], ["text", gr.Image(shape=(32, 32)).style(width=128, height=128)])
32
  demo.launch()
 
10
  model = ResNet18()
11
  model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')), strict=False)
12
 
13
+ inv_normalize = transforms.Normalize(
14
+ mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23],
15
+ std=[1/0.23, 1/0.23, 1/0.23]
16
+ )
17
+
18
  def inference(input_img, transparency, target_layer_number):
19
  transform = transforms.ToTensor()
20
  input_img = transform(input_img)
 
33
  visualization = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True, image_weight=transparency)
34
  return classes[prediction[0].item()], visualization
35
 
36
+ demo = gr.Interface(inference, [gr.Image(shape=(32, 32)), gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"), gr.Slider(-5, -1, value = -2, step=1, label="Which Layer?")], ["text", gr.Image(shape=(32, 32)).style(width=128, height=128)])
37
  demo.launch()