theschoolofai commited on
Commit
819bcb6
·
1 Parent(s): d714a7d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -0
app.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch, torchvision
2
+ from torchvision import transforms
3
+ import numpy as np
4
+ import gradio as gr
5
+ from PIL import Image
6
+ from pytorch_grad_cam import GradCAM
7
+ from pytorch_grad_cam.utils.image import show_cam_on_image
8
+ from resnet import ResNet18
9
+ import gradio as gr
10
+
11
+ model = ResNet18()
12
+ model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')), strict=False)
13
+
14
+ inv_normalize = transforms.Normalize(
15
+ mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23],
16
+ std=[1/0.23, 1/0.23, 1/0.23]
17
+ )
18
+ classes = ('plane', 'car', 'bird', 'cat', 'deer',
19
+ 'dog', 'frog', 'horse', 'ship', 'truck')
20
+
21
+ def inference(input_img, transparency = 0.5, target_layer_number = -1):
22
+ transform = transforms.ToTensor()
23
+ org_img = input_img
24
+ input_img = transform(input_img)
25
+ input_img = input_img
26
+ input_img = input_img.unsqueeze(0)
27
+ outputs = model(input_img)
28
+ softmax = torch.nn.Softmax(dim=0)
29
+ o = softmax(outputs.flatten())
30
+ confidences = {classes[i]: float(o[i]) for i in range(10)}
31
+ _, prediction = torch.max(outputs, 1)
32
+ target_layers = [model.layer2[target_layer_number]]
33
+ cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False)
34
+ grayscale_cam = cam(input_tensor=input_img, targets=None)
35
+ grayscale_cam = grayscale_cam[0, :]
36
+ img = input_img.squeeze(0)
37
+ img = inv_normalize(img)
38
+ rgb_img = np.transpose(img, (1, 2, 0))
39
+ rgb_img = rgb_img.numpy()
40
+ visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency)
41
+ return confidences, visualization
42
+
43
+ title = "CIFAR10 trained on ResNet18 Model with GradCAM"
44
+ description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results"
45
+ examples = [["cat.jpg", 0.5, -1], ["dog.jpg", 0.5, -1]]
46
+ demo = gr.Interface(
47
+ inference,
48
+ inputs = [gr.Image(shape=(32, 32), label="Input Image"), gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"), gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")],
49
+ outputs = [gr.Label(num_top_classes=3), gr.Image(shape=(32, 32), label="Output").style(width=128, height=128)],
50
+ title = title,
51
+ description = description,
52
+ examples = examples,
53
+ )
54
+ demo.launch()