# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb. # %% auto 0 __all__ = ['learn', 'categories', 'image', 'label', 'outputs', 'examples', 'title', 'description', 'article', 'interpretation', 'enable_queue', 'is_cat', 'classify_image'] # %% app.ipynb 2 import gradio as gr from fastai.vision.all import * def is_cat(x): return x[0].isupper() # %% app.ipynb 4 learn = load_learner('model.pkl') # %% app.ipynb 6 categories = ('Dog', 'Cat') def classify_image(img): pred,pred_idx,probs = learn.predict(img) return dict(zip(categories, map(float, probs))) # return {labels[i]: float(probs[i]) for i in range(len(labels))} # %% app.ipynb 8 image = gr.inputs.Image(shape=(512, 512)) label = outputs=gr.outputs.Label() examples = ['puppy.jpeg'] title = "Dog vs Cat Classifier" description = "A Dog vs Cat classifier trained on the Oxford Pets dataset with fastai." article="

Sirgil Home

" interpretation='default' enable_queue=True gr.Interface(fn=classify_image,inputs=image,outputs=label,title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()