Thiago Hersan commited on
Commit
a71ecc9
·
1 Parent(s): 19e4dee

fix fastapi version

Browse files
Files changed (2) hide show
  1. app.ipynb +51 -10
  2. requirements.txt +6 -5
app.ipynb CHANGED
@@ -23,7 +23,51 @@
23
  "ade_mean=[0.485, 0.456, 0.406]\n",
24
  "ade_std=[0.229, 0.224, 0.225]\n",
25
  "\n",
26
- "model_id = f\"thiagohersan/maskformer-satellite-trees\""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  ]
28
  },
29
  {
@@ -38,7 +82,7 @@
38
  " do_normalize=False,\n",
39
  " do_rescale=False,\n",
40
  " ignore_index=255,\n",
41
- " reduce_labels=False\n",
42
  ")\n",
43
  "\n",
44
  "hf_token = environ.get('HFTOKEN') or True\n",
@@ -72,9 +116,7 @@
72
  "outputs": [],
73
  "source": [
74
  "results = preprocessor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[img_size])[0]\n",
75
- "results = results.numpy()\n",
76
- "\n",
77
- "labels = np.unique(results)"
78
  ]
79
  },
80
  {
@@ -83,14 +125,13 @@
83
  "metadata": {},
84
  "outputs": [],
85
  "source": [
86
- "for label_id in labels:\n",
87
- " print(model.config.id2label[label_id])"
88
  ]
89
  }
90
  ],
91
  "metadata": {
92
  "kernelspec": {
93
- "display_name": "Python 3.8.15 ('hf-gradio')",
94
  "language": "python",
95
  "name": "python3"
96
  },
@@ -104,12 +145,12 @@
104
  "name": "python",
105
  "nbconvert_exporter": "python",
106
  "pygments_lexer": "ipython3",
107
- "version": "3.8.15"
108
  },
109
  "orig_nbformat": 4,
110
  "vscode": {
111
  "interpreter": {
112
- "hash": "4888b226c77b860705e4be316b14a092026f41c3585ee0ddb38f3008c0cb495e"
113
  }
114
  }
115
  },
 
23
  "ade_mean=[0.485, 0.456, 0.406]\n",
24
  "ade_std=[0.229, 0.224, 0.225]\n",
25
  "\n",
26
+ "palette = [\n",
27
+ " [120, 120, 120], [4, 200, 4], [4, 4, 250], [6, 230, 230],\n",
28
+ " [80, 50, 50], [120, 120, 80], [140, 140, 140], [204, 5, 255]\n",
29
+ "]\n",
30
+ "\n",
31
+ "model_id = f\"thiagohersan/maskformer-satellite-trees\"\n",
32
+ "\n",
33
+ "vegetation_labels = [\"vegetation\"]"
34
+ ]
35
+ },
36
+ {
37
+ "cell_type": "code",
38
+ "execution_count": null,
39
+ "metadata": {},
40
+ "outputs": [],
41
+ "source": [
42
+ "def visualize_instance_seg_mask(img_in, mask, id2label, included_labels):\n",
43
+ " img_out = np.zeros((mask.shape[0], mask.shape[1], 3))\n",
44
+ " image_total_pixels = mask.shape[0] * mask.shape[1]\n",
45
+ " label_ids = np.unique(mask)\n",
46
+ "\n",
47
+ " id2color = {id: palette[id] for id in label_ids}\n",
48
+ " id2count = {id: 0 for id in label_ids}\n",
49
+ "\n",
50
+ " for i in range(img_out.shape[0]):\n",
51
+ " for j in range(img_out.shape[1]):\n",
52
+ " img_out[i, j, :] = id2color[mask[i, j]]\n",
53
+ " id2count[mask[i, j]] = id2count[mask[i, j]] + 1\n",
54
+ "\n",
55
+ " image_res = (0.5 * img_in + 0.5 * img_out).astype(np.uint8)\n",
56
+ "\n",
57
+ " dataframe = [[\n",
58
+ " f\"{id2label[id]}\",\n",
59
+ " f\"{(100 * id2count[id] / image_total_pixels):.2f} %\",\n",
60
+ " f\"{np.sqrt(id2count[id] / image_total_pixels):.2f} m\"\n",
61
+ " ] for id in label_ids if id2label[id] in included_labels]\n",
62
+ "\n",
63
+ " if len(dataframe) < 1:\n",
64
+ " dataframe = [[\n",
65
+ " f\"\",\n",
66
+ " f\"{(0):.2f} %\",\n",
67
+ " f\"{(0):.2f} m\"\n",
68
+ " ]]\n",
69
+ "\n",
70
+ " return image_res, dataframe\n"
71
  ]
72
  },
73
  {
 
82
  " do_normalize=False,\n",
83
  " do_rescale=False,\n",
84
  " ignore_index=255,\n",
85
+ " do_reduce_labels=False\n",
86
  ")\n",
87
  "\n",
88
  "hf_token = environ.get('HFTOKEN') or True\n",
 
116
  "outputs": [],
117
  "source": [
118
  "results = preprocessor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[img_size])[0]\n",
119
+ "mask_img, dataframe = visualize_instance_seg_mask(np.array(img), results.numpy(), model.config.id2label, vegetation_labels)"
 
 
120
  ]
121
  },
122
  {
 
125
  "metadata": {},
126
  "outputs": [],
127
  "source": [
128
+ "dataframe"
 
129
  ]
130
  }
131
  ],
132
  "metadata": {
133
  "kernelspec": {
134
+ "display_name": "Python 3.8.15 ('gradio2023')",
135
  "language": "python",
136
  "name": "python3"
137
  },
 
145
  "name": "python",
146
  "nbconvert_exporter": "python",
147
  "pygments_lexer": "ipython3",
148
+ "version": "3.9.17"
149
  },
150
  "orig_nbformat": 4,
151
  "vscode": {
152
  "interpreter": {
153
+ "hash": "311e94dbd43374307e33a15d3b7324b15a4f7b1d7ecfe8226f18075b87b9fae7"
154
  }
155
  }
156
  },
requirements.txt CHANGED
@@ -1,5 +1,6 @@
1
- Pillow==9.4.0
2
- scipy==1.9.3
3
- torch==1.13.1
4
- torchvision==0.14.1
5
- transformers==4.25.1
 
 
1
+ fastapi==0.89.0
2
+ Pillow
3
+ scipy
4
+ torch
5
+ torchvision
6
+ transformers