Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,90 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import random
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import torch
|
@@ -143,4 +228,4 @@ with gr.Blocks(css=css) as demo:
|
|
143 |
outputs = [result]
|
144 |
)
|
145 |
|
146 |
-
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
import torch
|
4 |
+
from datasets import load_dataset
|
5 |
+
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
6 |
+
|
7 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
8 |
+
|
9 |
+
title = "GenAI Audio Demo"
|
10 |
+
description = """
|
11 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
|
12 |
+
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
13 |
+

|
14 |
+
"""
|
15 |
+
|
16 |
+
# Load speech translation pipeline
|
17 |
+
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
18 |
+
|
19 |
+
# Load text-to-speech processor from pretrained dataset
|
20 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
21 |
+
|
22 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
23 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
24 |
+
|
25 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
26 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
27 |
+
# Function for translating different language using pretrained models
|
28 |
+
def translate(audio):
|
29 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
30 |
+
return outputs["text"]
|
31 |
+
|
32 |
+
# Function to synthesise the text using the processor above
|
33 |
+
def synthesise(text):
|
34 |
+
inputs = processor(text=text, return_tensors="pt")
|
35 |
+
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
36 |
+
return speech.cpu()
|
37 |
+
|
38 |
+
# Main function
|
39 |
+
def speech_to_speech_translation(audio):
|
40 |
+
translated_text = translate(audio)
|
41 |
+
synthesised_speech = synthesise(translated_text)
|
42 |
+
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
43 |
+
return 16000, synthesised_speech
|
44 |
+
|
45 |
+
# Function for text to speech
|
46 |
+
def text_to_speech(text):
|
47 |
+
synthesised_speech = synthesise(text)
|
48 |
+
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
49 |
+
return 16000, synthesised_speech
|
50 |
+
|
51 |
+
demo = gr.Blocks()
|
52 |
+
|
53 |
+
# Mic translation using microphone as the input
|
54 |
+
mic_translate = gr.Interface(
|
55 |
+
fn=speech_to_speech_translation,
|
56 |
+
inputs=gr.Audio(source="microphone", type="filepath"),
|
57 |
+
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
58 |
+
title=title,
|
59 |
+
description=description,
|
60 |
+
)
|
61 |
+
|
62 |
+
# File translation using uploaded files as input
|
63 |
+
file_translate = gr.Interface(
|
64 |
+
fn=speech_to_speech_translation,
|
65 |
+
inputs=gr.Audio(source="upload", type="filepath"),
|
66 |
+
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
67 |
+
examples=[["./english.wav"], ["./chinese.wav"]],
|
68 |
+
title=title,
|
69 |
+
description=description,
|
70 |
+
)
|
71 |
+
|
72 |
+
# Text translation using text as input
|
73 |
+
text_translate = gr.Interface(
|
74 |
+
fn=text_to_speech,
|
75 |
+
inputs="textbox",
|
76 |
+
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
77 |
+
title=title,
|
78 |
+
description=description
|
79 |
+
)
|
80 |
+
|
81 |
+
# Showcase the demo using different tabs of the different features
|
82 |
+
with demo:
|
83 |
+
gr.TabbedInterface([mic_translate, file_translate, text_translate], ["Microphone", "Audio File", "Text to Speech"])
|
84 |
+
|
85 |
+
demo.launch()
|
86 |
+
'''import gradio as gr
|
87 |
+
import numpy as np
|
88 |
import random
|
89 |
from diffusers import DiffusionPipeline
|
90 |
import torch
|
|
|
228 |
outputs = [result]
|
229 |
)
|
230 |
|
231 |
+
demo.queue().launch()'''
|