Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
-
|
2 |
import numpy as np
|
3 |
import torch
|
|
|
|
|
4 |
from datasets import load_dataset
|
5 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
6 |
|
7 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
8 |
|
9 |
-
title = "GenAI
|
10 |
description = """
|
11 |
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
|
12 |
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
@@ -24,6 +26,27 @@ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(devic
|
|
24 |
|
25 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
26 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
# Function for translating different language using pretrained models
|
28 |
def translate(audio):
|
29 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
@@ -48,62 +71,8 @@ def text_to_speech(text):
|
|
48 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
49 |
return 16000, synthesised_speech
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
# Mic translation using microphone as the input
|
54 |
-
mic_translate = gr.Interface(
|
55 |
-
fn=speech_to_speech_translation,
|
56 |
-
inputs=gr.Audio(source="microphone", type="filepath"),
|
57 |
-
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
58 |
-
title=title,
|
59 |
-
description=description,
|
60 |
-
)
|
61 |
-
|
62 |
-
# File translation using uploaded files as input
|
63 |
-
file_translate = gr.Interface(
|
64 |
-
fn=speech_to_speech_translation,
|
65 |
-
inputs=gr.Audio(source="upload", type="filepath"),
|
66 |
-
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
67 |
-
examples=[["./english.wav"], ["./chinese.wav"]],
|
68 |
-
title=title,
|
69 |
-
description=description,
|
70 |
-
)
|
71 |
-
|
72 |
-
# Text translation using text as input
|
73 |
-
text_translate = gr.Interface(
|
74 |
-
fn=text_to_speech,
|
75 |
-
inputs="textbox",
|
76 |
-
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
77 |
-
title=title,
|
78 |
-
description=description
|
79 |
-
)
|
80 |
-
|
81 |
-
# Showcase the demo using different tabs of the different features
|
82 |
-
with demo:
|
83 |
-
gr.TabbedInterface([mic_translate, file_translate, text_translate], ["Microphone", "Audio File", "Text to Speech"])
|
84 |
-
|
85 |
-
demo.launch()'''
|
86 |
-
|
87 |
-
import gradio as gr
|
88 |
-
import numpy as np
|
89 |
-
import random
|
90 |
-
from diffusers import DiffusionPipeline
|
91 |
-
import torch
|
92 |
-
|
93 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
94 |
-
|
95 |
-
if torch.cuda.is_available():
|
96 |
-
torch.cuda.max_memory_allocated(device=device)
|
97 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
98 |
-
pipe.enable_xformers_memory_efficient_attention()
|
99 |
-
pipe = pipe.to(device)
|
100 |
-
else:
|
101 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
102 |
-
pipe = pipe.to(device)
|
103 |
-
|
104 |
-
MAX_SEED = np.iinfo(np.int32).max
|
105 |
-
MAX_IMAGE_SIZE = 1024
|
106 |
-
|
107 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
108 |
|
109 |
if randomize_seed:
|
@@ -124,11 +93,10 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
124 |
return image
|
125 |
|
126 |
examples = [
|
127 |
-
"
|
128 |
-
"An astronaut riding a green horse",
|
129 |
-
"A delicious ceviche cheesecake slice",
|
130 |
]
|
131 |
|
|
|
132 |
css="""
|
133 |
#col-container {
|
134 |
margin: 0 auto;
|
@@ -136,16 +104,41 @@ css="""
|
|
136 |
}
|
137 |
"""
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
with gr.Column(elem_id="col-container"):
|
147 |
gr.Markdown(f"""
|
148 |
-
# Text-to-Image
|
149 |
Currently running on {power_device}.
|
150 |
""")
|
151 |
|
@@ -229,4 +222,15 @@ with gr.Blocks(css=css) as demo:
|
|
229 |
outputs = [result]
|
230 |
)
|
231 |
|
232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
+
import random
|
5 |
+
from diffusers import DiffusionPipeline
|
6 |
from datasets import load_dataset
|
7 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
+
title = "GenAI StoryTeller"
|
12 |
description = """
|
13 |
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
|
14 |
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
|
|
26 |
|
27 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
28 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
29 |
+
|
30 |
+
# Load diffusion pipeline for image generation
|
31 |
+
if torch.cuda.is_available():
|
32 |
+
torch.cuda.max_memory_allocated(device=device)
|
33 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
34 |
+
pipe.enable_xformers_memory_efficient_attention()
|
35 |
+
pipe = pipe.to(device)
|
36 |
+
else:
|
37 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
38 |
+
pipe = pipe.to(device)
|
39 |
+
|
40 |
+
if torch.cuda.is_available():
|
41 |
+
power_device = "GPU"
|
42 |
+
else:
|
43 |
+
power_device = "CPU"
|
44 |
+
|
45 |
+
# Limit the file size
|
46 |
+
MAX_SEED = np.iinfo(np.int32).max
|
47 |
+
MAX_IMAGE_SIZE = 1024
|
48 |
+
|
49 |
+
# Speech GenAI
|
50 |
# Function for translating different language using pretrained models
|
51 |
def translate(audio):
|
52 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
|
|
71 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
72 |
return 16000, synthesised_speech
|
73 |
|
74 |
+
# Image GenAI
|
75 |
+
# Text to Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
77 |
|
78 |
if randomize_seed:
|
|
|
93 |
return image
|
94 |
|
95 |
examples = [
|
96 |
+
"Dog licking ice cream",
|
|
|
|
|
97 |
]
|
98 |
|
99 |
+
# CSS
|
100 |
css="""
|
101 |
#col-container {
|
102 |
margin: 0 auto;
|
|
|
104 |
}
|
105 |
"""
|
106 |
|
107 |
+
demo = gr.Blocks()
|
108 |
+
|
109 |
+
# Mic translation using microphone as the input
|
110 |
+
mic_translate = gr.Interface(
|
111 |
+
fn=speech_to_speech_translation,
|
112 |
+
inputs=gr.Audio(source="microphone", type="filepath"),
|
113 |
+
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
114 |
+
title=title,
|
115 |
+
description=description,
|
116 |
+
)
|
117 |
+
|
118 |
+
# File translation using uploaded files as input
|
119 |
+
file_translate = gr.Interface(
|
120 |
+
fn=speech_to_speech_translation,
|
121 |
+
inputs=gr.Audio(source="upload", type="filepath"),
|
122 |
+
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
123 |
+
examples=[["./english.wav"], ["./chinese.wav"]],
|
124 |
+
title=title,
|
125 |
+
description=description,
|
126 |
+
)
|
127 |
|
128 |
+
# Text translation using text as input
|
129 |
+
text_translate = gr.Interface(
|
130 |
+
fn=text_to_speech,
|
131 |
+
inputs="textbox",
|
132 |
+
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
133 |
+
title=title,
|
134 |
+
description=description
|
135 |
+
)
|
136 |
+
|
137 |
+
with gr.Blocks(css=css) as image:
|
138 |
|
139 |
with gr.Column(elem_id="col-container"):
|
140 |
gr.Markdown(f"""
|
141 |
+
# Text-to-Image
|
142 |
Currently running on {power_device}.
|
143 |
""")
|
144 |
|
|
|
222 |
outputs = [result]
|
223 |
)
|
224 |
|
225 |
+
# Text to Image interface
|
226 |
+
image_generation = gr.Interface(
|
227 |
+
fn=infer,
|
228 |
+
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
229 |
+
outputs=[result]
|
230 |
+
)
|
231 |
+
|
232 |
+
# Showcase the demo using different tabs of the different features
|
233 |
+
with demo:
|
234 |
+
gr.TabbedInterface([mic_translate, file_translate, text_translate, image_generation], ["Microphone", "Audio File", "Text to Speech", "Text to Image"])
|
235 |
+
|
236 |
+
demo.launch()
|