File size: 4,926 Bytes
5b83793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import glob
import os
import sys
import time
import math
from datetime import datetime
import random
import logging
from collections import OrderedDict

import natsort
import numpy as np
import cv2
import torch
from torchvision.utils import make_grid
from shutil import get_terminal_size

import yaml

try:
    from yaml import CLoader as Loader, CDumper as Dumper
except ImportError:
    from yaml import Loader, Dumper


def OrderedYaml():
    '''yaml orderedDict support'''
    _mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG

    def dict_representer(dumper, data):
        return dumper.represent_dict(data.items())

    def dict_constructor(loader, node):
        return OrderedDict(loader.construct_pairs(node))

    Dumper.add_representer(OrderedDict, dict_representer)
    Loader.add_constructor(_mapping_tag, dict_constructor)
    return Loader, Dumper


####################
# miscellaneous
####################


def get_timestamp():
    return datetime.now().strftime('%y%m%d-%H%M%S')


def mkdir(path):
    if not os.path.exists(path):
        os.makedirs(path)


def mkdirs(paths):
    if isinstance(paths, str):
        mkdir(paths)
    else:
        for path in paths:
            mkdir(path)


def mkdir_and_rename(path):
    if os.path.exists(path):
        new_name = path + '_archived_' + get_timestamp()
        print('Path already exists. Rename it to [{:s}]'.format(new_name))
        logger = logging.getLogger('base')
        logger.info('Path already exists. Rename it to [{:s}]'.format(new_name))
        os.rename(path, new_name)
    os.makedirs(path)


def set_random_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)


def setup_logger(logger_name, root, phase, level=logging.INFO, screen=False, tofile=False):
    '''set up logger'''
    lg = logging.getLogger(logger_name)
    formatter = logging.Formatter('%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s',
                                  datefmt='%y-%m-%d %H:%M:%S')
    lg.setLevel(level)
    if tofile:
        log_file = os.path.join(root, phase + '_{}.log'.format(get_timestamp()))
        fh = logging.FileHandler(log_file, mode='w')
        fh.setFormatter(formatter)
        lg.addHandler(fh)
    if screen:
        sh = logging.StreamHandler()
        sh.setFormatter(formatter)
        lg.addHandler(sh)


####################
# image convert
####################


def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
    '''
    Converts a torch Tensor into an image Numpy array
    Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
    Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
    '''
    if hasattr(tensor, 'detach'):
        tensor = tensor.detach()
    tensor = tensor.squeeze().float().cpu().clamp_(*min_max)  # clamp
    tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0])  # to range [0,1]
    n_dim = tensor.dim()
    if n_dim == 4:
        n_img = len(tensor)
        img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
        img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0))  # HWC, BGR
    elif n_dim == 3:
        img_np = tensor.numpy()
        img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0))  # HWC, BGR
    elif n_dim == 2:
        img_np = tensor.numpy()
    else:
        raise TypeError(
            'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
    if out_type == np.uint8:
        img_np = (img_np * 255.0).round()
        # Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
    return img_np.astype(out_type)


def save_img(img, img_path, mode='RGB'):
    cv2.imwrite(img_path, img)


####################
# metric
####################


def calculate_psnr(img1, img2):
    # img1 and img2 have range [0, 255]
    img1 = img1.astype(np.float64)
    img2 = img2.astype(np.float64)
    mse = np.mean((img1 - img2) ** 2)
    if mse == 0:
        return float('inf')
    return 20 * math.log10(255.0 / math.sqrt(mse))


def get_resume_paths(opt):
    resume_state_path = None
    resume_model_path = None
    ts = opt_get(opt, ['path', 'training_state'])
    if opt.get('path', {}).get('resume_state', None) == "auto" and ts is not None:
        wildcard = os.path.join(ts, "*")
        paths = natsort.natsorted(glob.glob(wildcard))
        if len(paths) > 0:
            resume_state_path = paths[-1]
            resume_model_path = resume_state_path.replace('training_state', 'models').replace('.state', '_G.pth')
    else:
        resume_state_path = opt.get('path', {}).get('resume_state')
    return resume_state_path, resume_model_path


def opt_get(opt, keys, default=None):
    if opt is None:
        return default
    ret = opt
    for k in keys:
        ret = ret.get(k, None)
        if ret is None:
            return default
    return ret