Spaces:
Running
Running
File size: 6,240 Bytes
42d27cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
# Copyright (c) 2020 Huawei Technologies Co., Ltd.
# Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
#
# The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
import os
import subprocess
import torch.utils.data as data
import numpy as np
import time
import torch
import pickle
class LRHR_PKLDataset(data.Dataset):
def __init__(self, opt):
super(LRHR_PKLDataset, self).__init__()
self.opt = opt
self.crop_size = opt.get("GT_size", None)
self.scale = None
self.random_scale_list = [1]
hr_file_path = opt["dataroot_GT"]
lr_file_path = opt["dataroot_LQ"]
y_labels_file_path = opt['dataroot_y_labels']
gpu = True
augment = True
self.use_flip = opt["use_flip"] if "use_flip" in opt.keys() else False
self.use_rot = opt["use_rot"] if "use_rot" in opt.keys() else False
self.use_crop = opt["use_crop"] if "use_crop" in opt.keys() else False
self.center_crop_hr_size = opt.get("center_crop_hr_size", None)
n_max = opt["n_max"] if "n_max" in opt.keys() else int(1e8)
t = time.time()
self.lr_images = self.load_pkls(lr_file_path, n_max)
self.hr_images = self.load_pkls(hr_file_path, n_max)
min_val_hr = np.min([i.min() for i in self.hr_images[:20]])
max_val_hr = np.max([i.max() for i in self.hr_images[:20]])
min_val_lr = np.min([i.min() for i in self.lr_images[:20]])
max_val_lr = np.max([i.max() for i in self.lr_images[:20]])
t = time.time() - t
print("Loaded {} HR images with [{:.2f}, {:.2f}] in {:.2f}s from {}".
format(len(self.hr_images), min_val_hr, max_val_hr, t, hr_file_path))
print("Loaded {} LR images with [{:.2f}, {:.2f}] in {:.2f}s from {}".
format(len(self.lr_images), min_val_lr, max_val_lr, t, lr_file_path))
self.gpu = gpu
self.augment = augment
self.measures = None
def load_pkls(self, path, n_max):
assert os.path.isfile(path), path
images = []
with open(path, "rb") as f:
images += pickle.load(f)
assert len(images) > 0, path
images = images[:n_max]
images = [np.transpose(image, [2, 0, 1]) for image in images]
return images
def __len__(self):
return len(self.hr_images)
def __getitem__(self, item):
hr = self.hr_images[item]
lr = self.lr_images[item]
if self.scale == None:
self.scale = hr.shape[1] // lr.shape[1]
assert hr.shape[1] == self.scale * lr.shape[1], ('non-fractional ratio', lr.shape, hr.shape)
if self.use_crop:
hr, lr = random_crop(hr, lr, self.crop_size, self.scale, self.use_crop)
if self.center_crop_hr_size:
hr, lr = center_crop(hr, self.center_crop_hr_size), center_crop(lr, self.center_crop_hr_size // self.scale)
if self.use_flip:
hr, lr = random_flip(hr, lr)
if self.use_rot:
hr, lr = random_rotation(hr, lr)
hr = hr / 255.0
lr = lr / 255.0
if self.measures is None or np.random.random() < 0.05:
if self.measures is None:
self.measures = {}
self.measures['hr_means'] = np.mean(hr)
self.measures['hr_stds'] = np.std(hr)
self.measures['lr_means'] = np.mean(lr)
self.measures['lr_stds'] = np.std(lr)
hr = torch.Tensor(hr)
lr = torch.Tensor(lr)
# if self.gpu:
# hr = hr.cuda()
# lr = lr.cuda()
return {'LQ': lr, 'GT': hr, 'LQ_path': str(item), 'GT_path': str(item)}
def print_and_reset(self, tag):
m = self.measures
kvs = []
for k in sorted(m.keys()):
kvs.append("{}={:.2f}".format(k, m[k]))
print("[KPI] " + tag + ": " + ", ".join(kvs))
self.measures = None
def random_flip(img, seg):
random_choice = np.random.choice([True, False])
img = img if random_choice else np.flip(img, 2).copy()
seg = seg if random_choice else np.flip(seg, 2).copy()
return img, seg
def random_rotation(img, seg):
random_choice = np.random.choice([0, 1, 3])
img = np.rot90(img, random_choice, axes=(1, 2)).copy()
seg = np.rot90(seg, random_choice, axes=(1, 2)).copy()
return img, seg
def random_crop(hr, lr, size_hr, scale, random):
size_lr = size_hr // scale
size_lr_x = lr.shape[1]
size_lr_y = lr.shape[2]
start_x_lr = np.random.randint(low=0, high=(size_lr_x - size_lr) + 1) if size_lr_x > size_lr else 0
start_y_lr = np.random.randint(low=0, high=(size_lr_y - size_lr) + 1) if size_lr_y > size_lr else 0
# LR Patch
lr_patch = lr[:, start_x_lr:start_x_lr + size_lr, start_y_lr:start_y_lr + size_lr]
# HR Patch
start_x_hr = start_x_lr * scale
start_y_hr = start_y_lr * scale
hr_patch = hr[:, start_x_hr:start_x_hr + size_hr, start_y_hr:start_y_hr + size_hr]
return hr_patch, lr_patch
def center_crop(img, size):
assert img.shape[1] == img.shape[2], img.shape
border_double = img.shape[1] - size
assert border_double % 2 == 0, (img.shape, size)
border = border_double // 2
return img[:, border:-border, border:-border]
def center_crop_tensor(img, size):
assert img.shape[2] == img.shape[3], img.shape
border_double = img.shape[2] - size
assert border_double % 2 == 0, (img.shape, size)
border = border_double // 2
return img[:, :, border:-border, border:-border]
|