Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,129 Bytes
773c7bd 376b5d9 773c7bd 376b5d9 773c7bd f784787 376b5d9 773c7bd 376b5d9 f784787 773c7bd 376b5d9 773c7bd 376b5d9 773c7bd f58d262 f784787 773c7bd f58d262 773c7bd c837795 f58d262 c837795 773c7bd f58d262 773c7bd c837795 773c7bd c837795 f58d262 4f420c4 09073cb 4f420c4 c837795 773c7bd c837795 773c7bd c837795 773c7bd c837795 f58d262 c837795 773c7bd f58d262 c837795 f58d262 c837795 f58d262 c837795 f58d262 c837795 09073cb c837795 773c7bd c837795 773c7bd c837795 773c7bd c837795 773c7bd c837795 773c7bd c837795 f58d262 773c7bd c837795 376b5d9 773c7bd 7ca618f 773c7bd 4f420c4 09073cb 4f420c4 773c7bd 4f420c4 773c7bd f58d262 4f420c4 f58d262 773c7bd 4f420c4 773c7bd 5d8cb3b 773c7bd 4f420c4 773c7bd 376b5d9 773c7bd 376b5d9 773c7bd 376b5d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import csv
import datetime
import os
import re
import time
import uuid
from io import StringIO
import gradio as gr
import spaces
import torch
import torchaudio
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from vinorm import TTSnorm
# download for mecab
os.system("python -m unidic download")
HF_TOKEN = os.environ.get("HF_TOKEN")
api = HfApi(token=HF_TOKEN)
# This will trigger downloading model
print("Downloading if not downloaded viXTTS")
checkpoint_dir = "model/"
repo_id = "capleaf/viXTTS"
use_deepspeed = False
os.makedirs(checkpoint_dir, exist_ok=True)
required_files = ["model.pth", "config.json", "vocab.json", "speakers_xtts.pth"]
files_in_dir = os.listdir(checkpoint_dir)
if not all(file in files_in_dir for file in required_files):
snapshot_download(
repo_id=repo_id,
repo_type="model",
local_dir=checkpoint_dir,
)
hf_hub_download(
repo_id="coqui/XTTS-v2",
filename="speakers_xtts.pth",
local_dir=checkpoint_dir,
)
xtts_config = os.path.join(checkpoint_dir, "config.json")
config = XttsConfig()
config.load_json(xtts_config)
MODEL = Xtts.init_from_config(config)
MODEL.load_checkpoint(
config, checkpoint_dir=checkpoint_dir, use_deepspeed=use_deepspeed
)
if torch.cuda.is_available():
MODEL.cuda()
supported_languages = config.languages
if not "vi" in supported_languages:
supported_languages.append("vi")
def normalize_vietnamese_text(text):
text = (
TTSnorm(text, unknown=False, lower=False, rule=True)
.replace("..", ".")
.replace("!.", "!")
.replace("?.", "?")
.replace(" .", ".")
.replace(" ,", ",")
.replace('"', "")
.replace("'", "")
.replace("AI", "Ây Ai")
.replace("A.I", "Ây Ai")
)
return text
def calculate_keep_len(text, lang):
"""Simple hack for short sentences"""
if lang in ["ja", "zh-cn"]:
return -1
word_count = len(text.split())
num_punct = text.count(".") + text.count("!") + text.count("?") + text.count(",")
if word_count < 5:
return 15000 * word_count + 2000 * num_punct
elif word_count < 10:
return 13000 * word_count + 2000 * num_punct
return -1
@spaces.GPU
def predict(
prompt,
language,
audio_file_pth,
normalize_text=True,
):
if language not in supported_languages:
metrics_text = gr.Warning(
f"Language you put {language} in is not in is not in our Supported Languages, please choose from dropdown"
)
return (None, metrics_text)
speaker_wav = audio_file_pth
if len(prompt) < 2:
metrics_text = gr.Warning("Please give a longer prompt text")
return (None, metrics_text)
# if len(prompt) > 250:
# metrics_text = gr.Warning(
# str(len(prompt))
# + " characters.\n"
# + "Your prompt is too long, please keep it under 250 characters\n"
# + "Văn bản quá dài, vui lòng giữ dưới 250 ký tự."
# )
# return (None, metrics_text)
try:
metrics_text = ""
t_latent = time.time()
try:
(
gpt_cond_latent,
speaker_embedding,
) = MODEL.get_conditioning_latents(
audio_path=speaker_wav,
gpt_cond_len=30,
gpt_cond_chunk_len=4,
max_ref_length=60,
)
except Exception as e:
print("Speaker encoding error", str(e))
metrics_text = gr.Warning(
"It appears something wrong with reference, did you unmute your microphone?"
)
return (None, metrics_text)
prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)
if normalize_text and language == "vi":
prompt = normalize_vietnamese_text(prompt)
print("I: Generating new audio...")
t0 = time.time()
out = MODEL.inference(
prompt,
language,
gpt_cond_latent,
speaker_embedding,
repetition_penalty=5.0,
temperature=0.75,
enable_text_splitting=True,
)
inference_time = time.time() - t0
print(f"I: Time to generate audio: {round(inference_time*1000)} milliseconds")
metrics_text += (
f"Time to generate audio: {round(inference_time*1000)} milliseconds\n"
)
real_time_factor = (time.time() - t0) / out["wav"].shape[-1] * 24000
print(f"Real-time factor (RTF): {real_time_factor}")
metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"
# Temporary hack for short sentences
keep_len = calculate_keep_len(prompt, language)
out["wav"] = out["wav"][:keep_len]
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
except RuntimeError as e:
if "device-side assert" in str(e):
# cannot do anything on cuda device side error, need to restart
print(
f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}",
flush=True,
)
gr.Warning("Unhandled Exception encounter, please retry in a minute")
print("Cuda device-assert Runtime encountered need restart")
error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S")
error_data = [
error_time,
prompt,
language,
audio_file_pth,
]
error_data = [str(e) if type(e) != str else e for e in error_data]
print(error_data)
print(speaker_wav)
write_io = StringIO()
csv.writer(write_io).writerows([error_data])
csv_upload = write_io.getvalue().encode()
filename = error_time + "_" + str(uuid.uuid4()) + ".csv"
print("Writing error csv")
error_api = HfApi()
error_api.upload_file(
path_or_fileobj=csv_upload,
path_in_repo=filename,
repo_id="coqui/xtts-flagged-dataset",
repo_type="dataset",
)
# speaker_wav
print("Writing error reference audio")
speaker_filename = error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
error_api = HfApi()
error_api.upload_file(
path_or_fileobj=speaker_wav,
path_in_repo=speaker_filename,
repo_id="coqui/xtts-flagged-dataset",
repo_type="dataset",
)
# HF Space specific.. This error is unrecoverable need to restart space
space = api.get_space_runtime(repo_id=repo_id)
if space.stage != "BUILDING":
api.restart_space(repo_id=repo_id)
else:
print("TRIED TO RESTART but space is building")
else:
if "Failed to decode" in str(e):
print("Speaker encoding error", str(e))
metrics_text = gr.Warning(
metrics_text="It appears something wrong with reference, did you unmute your microphone?"
)
else:
print("RuntimeError: non device-side assert error:", str(e))
metrics_text = gr.Warning(
"Something unexpected happened please retry again."
)
return (None, metrics_text)
return ("output.wav", metrics_text)
with gr.Blocks(analytics_enabled=False) as demo:
with gr.Row():
with gr.Column():
gr.Markdown(
"""
# viXTTS Demo ✨
- Github: https://github.com/thinhlpg/vixtts-demo/
"""
)
with gr.Column():
# placeholder to align the image
pass
with gr.Row():
with gr.Column():
input_text_gr = gr.Textbox(
label="Text Prompt (Văn bản cần đọc)",
info="Mỗi câu nên từ 10 từ trở lên.",
value="Xin chào, tôi là một mô hình chuyển đổi văn bản thành giọng nói tiếng Việt.",
)
language_gr = gr.Dropdown(
label="Language (Ngôn ngữ)",
choices=[
"vi",
"en",
"es",
"fr",
"de",
"it",
"pt",
"pl",
"tr",
"ru",
"nl",
"cs",
"ar",
"zh-cn",
"ja",
"ko",
"hu",
"hi",
],
max_choices=1,
value="vi",
)
normalize_text = gr.Checkbox(
label="Chuẩn hóa văn bản tiếng Việt",
info="Normalize Vietnamese text",
value=True,
)
ref_gr = gr.Audio(
label="Reference Audio (Giọng mẫu)",
type="filepath",
value="model/samples/nu-luu-loat.wav",
)
tts_button = gr.Button(
"Đọc 🗣️🔥",
elem_id="send-btn",
visible=True,
variant="primary",
)
with gr.Column():
audio_gr = gr.Audio(label="Synthesised Audio", autoplay=True)
out_text_gr = gr.Text(label="Metrics")
tts_button.click(
predict,
[
input_text_gr,
language_gr,
ref_gr,
normalize_text,
],
outputs=[audio_gr, out_text_gr],
api_name="predict",
)
demo.queue()
demo.launch(debug=True, show_api=True, share=True)
|