File size: 5,295 Bytes
4043b0f
 
 
 
 
 
 
 
8191a3f
4043b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f54e5c5
4043b0f
 
 
f54e5c5
4043b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f54e5c5
4043b0f
 
 
 
 
 
f54e5c5
4043b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f54e5c5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# @title Think Paraguayo

import os
import random
import time

os.system("pip install gradio, llama_index, ragatouille, llama-cpp-python")
os.system("git clone https://github.com/EnPaiva93/think-paraguayo-space-aux.git")
os.system("wget https://huggingface.co/thinkPy/gua-a_v0.2-dpo_mistral-7b_GGUF/resolve/main/gua-a_v0.2-dpo_mistral-7b_q4_K_M.gguf -O model.gguf")

from llama_cpp import Llama
import gradio as gr
from ragatouille import RAGPretrainedModel
from llama_index.core import Document, SimpleDirectoryReader
from llama_index.core.node_parser import SentenceSplitter

max_seq_length = 512 # Choose any! We auto support RoPE Scaling internally!

prompt = """Responde a preguntas de forma clara, amable, concisa y solamente en el lenguaje español, sobre el libro Ñande Ypykuéra.
Contexto
-------------------------
{}
-------------------------
### Pregunta:
{}
### Respuesta:
{}"""

# Initialize the LLM
llm = Llama(model_path="model.gguf",
            n_ctx=512,
            n_threads=2)

DOC_PATH = "./think-paraguayo-space-aux/index" 

print(os.getcwd())

documents = SimpleDirectoryReader(input_files=["./think-paraguayo-space-aux/libro.txt"]).load_data()

parser = SentenceSplitter(chunk_size=128, chunk_overlap=64)
nodes = parser.get_nodes_from_documents(
    documents, show_progress=False
)
list_nodes = [node.text for node in nodes]

print(os.getcwd())

if os.path.exists(DOC_PATH):
  RAG = RAGPretrainedModel.from_index(DOC_PATH)
else:
  RAG = RAGPretrainedModel.from_pretrained("AdrienB134/ColBERTv2.0-spanish-mmarcoES")
  my_documents = list_nodes
  index_path = RAG.index(index_name=DOC_PATH, max_document_length= 100, collection=my_documents)

# def convert_list_to_dict(lst):
#   res_dct = {i: lst[i] for i in range(len(lst))}
#   return res_dct

def reformat_rag(results_rag):
  if results_rag is not None:
    return [result["content"] for result in results_rag]
  else:
    return [""]

# def response(query: str = "Quien es gua'a?", context: str = ""):
#   # print(base_prompt.format(query,""))
#   inputs = tokenizer([base_prompt.format(query,"")], return_tensors = "pt").to("cuda")
#   outputs = model.generate(**inputs, max_new_tokens = 128, temperature = 0.1, repetition_penalty=1.15, pad_token_id=tokenizer.eos_token_id)
#   return tokenizer.batch_decode(outputs[0][inputs["input_ids"].shape[1]:].unsqueeze(0), skip_special_tokens=True)[0]


def chat_stream_completion(message, history):

    context = reformat_rag(RAG.search(message, k=1))
    context = " \n ".join(context)

    full_prompt = prompt.format(context,message,"")
    print(full_prompt)

    response = llm.create_completion(
        prompt=full_prompt,
        temperature=0.01,
        max_tokens=256,
        stream=True
    )

    # print(response)
    
    message_repl = ""
    for chunk in response:
      if len(chunk['choices'][0]["text"]) != 0:
        # print(chunk)
        message_repl = message_repl + chunk['choices'][0]["text"]
      yield message_repl


# def answer_question(pipeline, character, question):
# def answer_question(question):
#   # context = reformat_rag(RAG.search(question, k=2))
#   # context = " \n ".join(context)
#   yield chat_stream_completion(question, None)

# def answer_question(question):
#   context = reformat_rag(RAG.search(question, k=2))
#   context = " \n ".join(context)
#   return response(question, "")

# def random_element():
#         return random.choice(list_nodes)

# clear_output()
print("Importación Completada.. OK")

css = """
    h1 {
        font-size: 32px;
        text-align: center;
    }
    h2 {
        text-align: center;
    }
    img {
        height: 750px;  /* Reducing the image height */
    }
    """

def launcher():
    with gr.Blocks(css=css) as demo:
        gr.Markdown("# Think Paraguayo")
        gr.Markdown("## Conoce la cultura guaraní!!")

        with gr.Row(variant='panel'):
            with gr.Column(scale=1):
                gr.Image(value="./think-paraguayo-space-aux/think_paraguayo.jpeg", type="filepath", label="Imagen Estática")

            with gr.Column(scale=1):
                # with gr.Row():
                #     button = gr.Button("Cuentame ...")
                # with gr.Row():

                #     textbox = gr.Textbox(label="", interactive=False, value=random_element())
                #     button.click(fn=random_element, inputs=[], outputs=textbox)

                # with gr.Row():
                chatbot = gr.ChatInterface(
                    fn=chat_stream_completion,
                    retry_btn = None,
                    stop_btn = None,
                    undo_btn = None
                ).queue()
                # with gr.Row():
                #     msg = gr.Textbox()
                # with gr.Row():
                #     clear = gr.ClearButton([msg, chatbot])

                # def respond(message, chat_history):
                #     bot_message = answer_question(message)
                #     print(bot_message)
                #     chat_history.append((message, bot_message))
                #     time.sleep(2)
                #     return "", chat_history

                # msg.submit(chat_stream_completion, [msg, chatbot], [msg, chatbot])


    demo.launch(share=True, inline= False, debug=True)

if __name__ == "__main__":
    launcher()