enpaiva's picture
Create app.py
4043b0f verified
raw
history blame
5.26 kB
# @title Think Paraguayo
import os
import random
import time
os.system("pip install gradio, llama_index, ragatouille, llama-cpp-python")
os.system("git clone https://github.com/EnPaiva93/think-paraguayo-space-aux.git")
os.system("wget https://huggingface.co/thinkPy/gua-a_ft-v0.1_mistral-7b_GGUF/resolve/main/gua-a_mistral-7b_q4_K_M.gguf -O model.gguf")
from llama_cpp import Llama
import gradio as gr
from ragatouille import RAGPretrainedModel
from llama_index.core import Document, SimpleDirectoryReader
from llama_index.core.node_parser import SentenceSplitter
max_seq_length = 512 # Choose any! We auto support RoPE Scaling internally!
prompt = """Responde a preguntas de forma clara, amable, concisa y solamente en el lenguaje español, sobre el libro Ñande Ypykuéra.
Contexto
-------------------------
{}
-------------------------
### Pregunta:
{}
### Respuesta:
{}"""
# Initialize the LLM
llm = Llama(model_path="model.gguf",
n_ctx=512,
n_threads=2)
DOC_PATH = "/app/think-paraguayo-space-aux/index"
print(os.getcwd())
documents = SimpleDirectoryReader(input_files=["/app/think-paraguayo-space-aux/libro.txt"]).load_data()
parser = SentenceSplitter(chunk_size=128, chunk_overlap=64)
nodes = parser.get_nodes_from_documents(
documents, show_progress=False
)
list_nodes = [node.text for node in nodes]
print(os.getcwd())
if os.path.exists(DOC_PATH):
RAG = RAGPretrainedModel.from_index(DOC_PATH)
else:
RAG = RAGPretrainedModel.from_pretrained("AdrienB134/ColBERTv2.0-spanish-mmarcoES")
my_documents = list_nodes
index_path = RAG.index(index_name=DOC_PATH, max_document_length= 100, collection=my_documents)
# def convert_list_to_dict(lst):
# res_dct = {i: lst[i] for i in range(len(lst))}
# return res_dct
def reformat_rag(results_rag):
if results_rag is not None:
return [result["content"] for result in results_rag]
else:
return [""]
# def response(query: str = "Quien es gua'a?", context: str = ""):
# # print(base_prompt.format(query,""))
# inputs = tokenizer([base_prompt.format(query,"")], return_tensors = "pt").to("cuda")
# outputs = model.generate(**inputs, max_new_tokens = 128, temperature = 0.1, repetition_penalty=1.15, pad_token_id=tokenizer.eos_token_id)
# return tokenizer.batch_decode(outputs[0][inputs["input_ids"].shape[1]:].unsqueeze(0), skip_special_tokens=True)[0]
def chat_stream_completion(message, history):
context = reformat_rag(RAG.search(message, k=1))
context = " \n ".join(context)
full_prompt = prompt.format(context,message,"")
print(full_prompt)
response = llm.create_completion(
prompt=full_prompt,
temperature=0.01,
max_tokens=256,
stream=True
)
# print(response)
message_repl = ""
for chunk in response:
if len(chunk['choices'][0]["text"]) != 0:
# print(chunk)
message_repl = message_repl + chunk['choices'][0]["text"]
yield message_repl
# def answer_question(pipeline, character, question):
# def answer_question(question):
# # context = reformat_rag(RAG.search(question, k=2))
# # context = " \n ".join(context)
# yield chat_stream_completion(question, None)
# def answer_question(question):
# context = reformat_rag(RAG.search(question, k=2))
# context = " \n ".join(context)
# return response(question, "")
# def random_element():
# return random.choice(list_nodes)
# clear_output()
print("Importación Completada.. OK")
css = """
h1 {
font-size: 32px;
text-align: center;
}
h2 {
text-align: center;
}
img {
height: 750px; /* Reducing the image height */
}
"""
def main():
with gr.Blocks(css=css) as demo:
gr.Markdown("# Think Paraguayo")
gr.Markdown("## Conoce la cultura guaraní!!")
with gr.Row(variant='panel'):
with gr.Column(scale=1):
gr.Image(value="/app/think-paraguayo-space-aux/think_paraguayo.jpeg", type="filepath", label="Imagen Estática")
with gr.Column(scale=1):
# with gr.Row():
# button = gr.Button("Cuentame ...")
# with gr.Row():
# textbox = gr.Textbox(label="", interactive=False, value=random_element())
# button.click(fn=random_element, inputs=[], outputs=textbox)
# with gr.Row():
chatbot = gr.ChatInterface(
fn=chat_stream_completion,
retry_btn = None,
stop_btn = None,
undo_btn = None
).queue()
# with gr.Row():
# msg = gr.Textbox()
# with gr.Row():
# clear = gr.ClearButton([msg, chatbot])
# def respond(message, chat_history):
# bot_message = answer_question(message)
# print(bot_message)
# chat_history.append((message, bot_message))
# time.sleep(2)
# return "", chat_history
# msg.submit(chat_stream_completion, [msg, chatbot], [msg, chatbot])
demo.launch(share=True, inline= False, debug=True)
main()