Spaces:
Sleeping
Sleeping
# @title Think Paraguayo | |
import os | |
import random | |
import time | |
os.system("pip install gradio, llama_index, ragatouille, llama-cpp-python") | |
os.system("git clone https://github.com/EnPaiva93/think-paraguayo-space-aux.git") | |
os.system("wget https://huggingface.co/thinkPy/gua-a_ft-v0.1_mistral-7b_GGUF/resolve/main/gua-a_mistral-7b_q4_K_M.gguf -O model.gguf") | |
from llama_cpp import Llama | |
import gradio as gr | |
from ragatouille import RAGPretrainedModel | |
from llama_index.core import Document, SimpleDirectoryReader | |
from llama_index.core.node_parser import SentenceSplitter | |
max_seq_length = 512 # Choose any! We auto support RoPE Scaling internally! | |
prompt = """Responde a preguntas de forma clara, amable, concisa y solamente en el lenguaje español, sobre el libro Ñande Ypykuéra. | |
Contexto | |
------------------------- | |
{} | |
------------------------- | |
### Pregunta: | |
{} | |
### Respuesta: | |
{}""" | |
# Initialize the LLM | |
llm = Llama(model_path="model.gguf", | |
n_ctx=512, | |
n_threads=2) | |
DOC_PATH = "/app/think-paraguayo-space-aux/index" | |
print(os.getcwd()) | |
documents = SimpleDirectoryReader(input_files=["/app/think-paraguayo-space-aux/libro.txt"]).load_data() | |
parser = SentenceSplitter(chunk_size=128, chunk_overlap=64) | |
nodes = parser.get_nodes_from_documents( | |
documents, show_progress=False | |
) | |
list_nodes = [node.text for node in nodes] | |
print(os.getcwd()) | |
if os.path.exists(DOC_PATH): | |
RAG = RAGPretrainedModel.from_index(DOC_PATH) | |
else: | |
RAG = RAGPretrainedModel.from_pretrained("AdrienB134/ColBERTv2.0-spanish-mmarcoES") | |
my_documents = list_nodes | |
index_path = RAG.index(index_name=DOC_PATH, max_document_length= 100, collection=my_documents) | |
# def convert_list_to_dict(lst): | |
# res_dct = {i: lst[i] for i in range(len(lst))} | |
# return res_dct | |
def reformat_rag(results_rag): | |
if results_rag is not None: | |
return [result["content"] for result in results_rag] | |
else: | |
return [""] | |
# def response(query: str = "Quien es gua'a?", context: str = ""): | |
# # print(base_prompt.format(query,"")) | |
# inputs = tokenizer([base_prompt.format(query,"")], return_tensors = "pt").to("cuda") | |
# outputs = model.generate(**inputs, max_new_tokens = 128, temperature = 0.1, repetition_penalty=1.15, pad_token_id=tokenizer.eos_token_id) | |
# return tokenizer.batch_decode(outputs[0][inputs["input_ids"].shape[1]:].unsqueeze(0), skip_special_tokens=True)[0] | |
def chat_stream_completion(message, history): | |
context = reformat_rag(RAG.search(message, k=1)) | |
context = " \n ".join(context) | |
full_prompt = prompt.format(context,message,"") | |
print(full_prompt) | |
response = llm.create_completion( | |
prompt=full_prompt, | |
temperature=0.01, | |
max_tokens=256, | |
stream=True | |
) | |
# print(response) | |
message_repl = "" | |
for chunk in response: | |
if len(chunk['choices'][0]["text"]) != 0: | |
# print(chunk) | |
message_repl = message_repl + chunk['choices'][0]["text"] | |
yield message_repl | |
# def answer_question(pipeline, character, question): | |
# def answer_question(question): | |
# # context = reformat_rag(RAG.search(question, k=2)) | |
# # context = " \n ".join(context) | |
# yield chat_stream_completion(question, None) | |
# def answer_question(question): | |
# context = reformat_rag(RAG.search(question, k=2)) | |
# context = " \n ".join(context) | |
# return response(question, "") | |
# def random_element(): | |
# return random.choice(list_nodes) | |
# clear_output() | |
print("Importación Completada.. OK") | |
css = """ | |
h1 { | |
font-size: 32px; | |
text-align: center; | |
} | |
h2 { | |
text-align: center; | |
} | |
img { | |
height: 750px; /* Reducing the image height */ | |
} | |
""" | |
def main(): | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("# Think Paraguayo") | |
gr.Markdown("## Conoce la cultura guaraní!!") | |
with gr.Row(variant='panel'): | |
with gr.Column(scale=1): | |
gr.Image(value="/app/think-paraguayo-space-aux/think_paraguayo.jpeg", type="filepath", label="Imagen Estática") | |
with gr.Column(scale=1): | |
# with gr.Row(): | |
# button = gr.Button("Cuentame ...") | |
# with gr.Row(): | |
# textbox = gr.Textbox(label="", interactive=False, value=random_element()) | |
# button.click(fn=random_element, inputs=[], outputs=textbox) | |
# with gr.Row(): | |
chatbot = gr.ChatInterface( | |
fn=chat_stream_completion, | |
retry_btn = None, | |
stop_btn = None, | |
undo_btn = None | |
).queue() | |
# with gr.Row(): | |
# msg = gr.Textbox() | |
# with gr.Row(): | |
# clear = gr.ClearButton([msg, chatbot]) | |
# def respond(message, chat_history): | |
# bot_message = answer_question(message) | |
# print(bot_message) | |
# chat_history.append((message, bot_message)) | |
# time.sleep(2) | |
# return "", chat_history | |
# msg.submit(chat_stream_completion, [msg, chatbot], [msg, chatbot]) | |
demo.launch(share=True, inline= False, debug=True) | |
main() |