enpaiva's picture
Update app.py
9660f99 verified
# Think Paraguayo
import os
import random
import time
os.system("wget https://huggingface.co/thinkPy/gua-a_v0.1-ft_mistral-7b_GGUF/resolve/main/gua-a_v0.1-ft_mistral-7b_q4_K_M.gguf -O model.gguf")
from llama_cpp import Llama
import gradio as gr
from ragatouille import RAGPretrainedModel
from llama_index.core import Document, SimpleDirectoryReader
from llama_index.core.node_parser import SentenceSplitter
max_seq_length = 256
prompt = """Eres gua-a un modelo de lenguaje entrenado para responder preguntas sobre la cultura guaraní, debes responder de forma clara, amable, concisa y solamente en el lenguaje español, si encuentras las respuesta en este prompt puedes copiarla.
Contexto
--------------------------
{}
--------------------------
### Pregunta:
{}
### Respuesta:
{}"""
llm = Llama(model_path="model.gguf",
n_ctx=max_seq_length,
n_threads=2)
DOC_PATH = "/home/user/app/index"
RAG = RAGPretrainedModel.from_pretrained("AdrienB134/ColBERTv2.0-spanish-mmarcoES")
RAG = RAG.from_index(DOC_PATH, n_gpu=None)
RAG.search("init", None, k=1)
def reformat_rag(results_rag):
if results_rag is not None:
return [result["content"] for result in results_rag]
else:
return [""]
def chat_stream_completion(message, history):
context = reformat_rag(RAG.search(message, None, k=1))
context = " \n ".join(context)
full_prompt = prompt.format(context,message,"")
print(full_prompt)
response = llm.create_completion(
prompt=full_prompt,
temperature=0.1,
max_tokens=max_seq_length,
stream=True
)
message_repl = ""
for chunk in response:
if len(chunk['choices'][0]["text"]) != 0:
message_repl = message_repl + chunk['choices'][0]["text"]
yield message_repl
css = """
h1 {
font-size: 32px;
text-align: center;
}
h2 {
text-align: center;
}
img {
height: 750px; /* Reducing the image height */
}
"""
def launcher():
with gr.Blocks(css=css) as demo:
gr.Markdown("# Think Paraguayo")
gr.Markdown("## Conoce la cultura guaraní.")
with gr.Row(variant='panel'):
with gr.Column(scale=1):
gr.Image(value="think_paraguayo.jpeg", type="filepath", label="")
with gr.Column(scale=1):
chatbot = gr.ChatInterface(
fn=chat_stream_completion,
retry_btn = None,
stop_btn = None,
undo_btn = None
).queue()
demo.launch()
if __name__ == "__main__":
launcher()