# @title Think Paraguayo import os import random import time os.system("pip install gradio, llama_index, ragatouille, llama-cpp-python") os.system("git clone https://github.com/EnPaiva93/think-paraguayo-space-aux.git") os.system("wget https://huggingface.co/thinkPy/gua-a_v0.2-dpo_mistral-7b_GGUF/resolve/main/gua-a_v0.2-dpo_mistral-7b_q4_K_M.gguf -O model.gguf") from llama_cpp import Llama import gradio as gr from ragatouille import RAGPretrainedModel from llama_index.core import Document, SimpleDirectoryReader from llama_index.core.node_parser import SentenceSplitter max_seq_length = 512 # Choose any! We auto support RoPE Scaling internally! prompt = """Responde a preguntas de forma clara, amable, concisa y solamente en el lenguaje español, sobre el libro Ñande Ypykuéra. Contexto ------------------------- {} ------------------------- ### Pregunta: {} ### Respuesta: {}""" # Initialize the LLM llm = Llama(model_path="model.gguf", n_ctx=512, n_threads=2) DOC_PATH = "./think-paraguayo-space-aux/index" print(os.getcwd()) documents = SimpleDirectoryReader(input_files=["./think-paraguayo-space-aux/libro.txt"]).load_data() parser = SentenceSplitter(chunk_size=128, chunk_overlap=64) nodes = parser.get_nodes_from_documents( documents, show_progress=False ) list_nodes = [node.text for node in nodes] print(os.getcwd()) if os.path.exists(DOC_PATH): RAG = RAGPretrainedModel.from_index(DOC_PATH) else: RAG = RAGPretrainedModel.from_pretrained("AdrienB134/ColBERTv2.0-spanish-mmarcoES") my_documents = list_nodes index_path = RAG.index(index_name=DOC_PATH, max_document_length= 100, collection=my_documents) # def convert_list_to_dict(lst): # res_dct = {i: lst[i] for i in range(len(lst))} # return res_dct def reformat_rag(results_rag): if results_rag is not None: return [result["content"] for result in results_rag] else: return [""] # def response(query: str = "Quien es gua'a?", context: str = ""): # # print(base_prompt.format(query,"")) # inputs = tokenizer([base_prompt.format(query,"")], return_tensors = "pt").to("cuda") # outputs = model.generate(**inputs, max_new_tokens = 128, temperature = 0.1, repetition_penalty=1.15, pad_token_id=tokenizer.eos_token_id) # return tokenizer.batch_decode(outputs[0][inputs["input_ids"].shape[1]:].unsqueeze(0), skip_special_tokens=True)[0] def chat_stream_completion(message, history): context = reformat_rag(RAG.search(message, k=1)) context = " \n ".join(context) full_prompt = prompt.format(context,message,"") print(full_prompt) response = llm.create_completion( prompt=full_prompt, temperature=0.01, max_tokens=256, stream=True ) # print(response) message_repl = "" for chunk in response: if len(chunk['choices'][0]["text"]) != 0: # print(chunk) message_repl = message_repl + chunk['choices'][0]["text"] yield message_repl # def answer_question(pipeline, character, question): # def answer_question(question): # # context = reformat_rag(RAG.search(question, k=2)) # # context = " \n ".join(context) # yield chat_stream_completion(question, None) # def answer_question(question): # context = reformat_rag(RAG.search(question, k=2)) # context = " \n ".join(context) # return response(question, "") # def random_element(): # return random.choice(list_nodes) # clear_output() print("Importación Completada.. OK") css = """ h1 { font-size: 32px; text-align: center; } h2 { text-align: center; } img { height: 750px; /* Reducing the image height */ } """ def launcher(): with gr.Blocks(css=css) as demo: gr.Markdown("# Think Paraguayo") gr.Markdown("## Conoce la cultura guaraní!!") with gr.Row(variant='panel'): with gr.Column(scale=1): gr.Image(value="./think-paraguayo-space-aux/think_paraguayo.jpeg", type="filepath", label="Imagen Estática") with gr.Column(scale=1): # with gr.Row(): # button = gr.Button("Cuentame ...") # with gr.Row(): # textbox = gr.Textbox(label="", interactive=False, value=random_element()) # button.click(fn=random_element, inputs=[], outputs=textbox) # with gr.Row(): chatbot = gr.ChatInterface( fn=chat_stream_completion, retry_btn = None, stop_btn = None, undo_btn = None ).queue() # with gr.Row(): # msg = gr.Textbox() # with gr.Row(): # clear = gr.ClearButton([msg, chatbot]) # def respond(message, chat_history): # bot_message = answer_question(message) # print(bot_message) # chat_history.append((message, bot_message)) # time.sleep(2) # return "", chat_history # msg.submit(chat_stream_completion, [msg, chatbot], [msg, chatbot]) demo.launch(share=True, inline= False, debug=True) if __name__ == "__main__": launcher()