import gradio as gr from langchain.chat_models import ChatOpenAI from langchain.schema import HumanMessage from utils import SyncStreamingLLMCallbackHandler from anyio.from_thread import start_blocking_portal from queue import Queue import prompt, tiktoken def num_token(string: str) -> int: """Returns the number of tokens in a text string.""" encoding = tiktoken.get_encoding('cl100k_base') num_tokens = len(encoding.encode(string)) return num_tokens def send_message(history, temp, top_p, fp, pp): q = Queue() job_done = object() def task(): llm = ChatOpenAI( model_name="gpt-3.5-turbo", streaming=True, temperature=temp, model_kwargs = { 'top_p':top_p, 'frequency_penalty':fp, 'presence_penalty':pp } ) query_llm = ChatOpenAI( model_name="gpt-3.5-turbo", temperature = 0 ) query_template = prompt.search_query_gradio(history) search_query = query_llm([HumanMessage(content=query_template)]).content print('query: ', search_query) answer_template = prompt.question_answer_gradio(history, search_query) print('final temp: \n\n', answer_template, f'\nprompt total: {num_token(answer_template)}') llm([HumanMessage(content=answer_template)], callbacks=[SyncStreamingLLMCallbackHandler(q)]) q.put(job_done) return with start_blocking_portal() as portal: portal.start_task_soon(task) content = "" while True: next_token = q.get(True, timeout=10) if next_token is job_done: return history content += next_token latest = history[-1] latest[1] = content yield history def append_user_message(message, history): "Add user message to chain/history and clear input field" print(history) history.append([message, None]) return "", history css = """ .contain { display: flex; flex-direction: column; height: 100%;} #chatbot { flex-grow: 1;} #chatbot .user {text-align: right;} .contain { display: flex; flex-direction: column; height: 100%;} #query_ref { flex-grow: 1; } """ with gr.Blocks(css=css, theme=gr.themes.Default(primary_hue="orange")) as demo: with gr.Row(elem_id="whole_page"): with gr.Column(elem_id="sidebar", scale=0.2, min_width=0): # TODO temperature? gr.Markdown('## City of Lake Elsinore Proposal Demo', show_label=False) with gr.Row(elem_id="logo_section1"): with gr.Column(elem_id="logo_col1", scale=0.5, min_width=0): gr.HTML("""
ThinkCol
""") with gr.Column(elem_id="logo_col2", scale=0.5, min_width=0): gr.HTML("""
ThinkCol
""") gr.Markdown('### Chatbot Settings', show_label=False) temp = gr.Slider(maximum=1, label='Temperature') top_p = gr.Slider(maximum=1, label='Top_p', value=1, interactive=True, visible='primary') fp = gr.Slider(maximum=2, label='Frequency Penalty') pp = gr.Slider(maximum=2, label='Presence Penalty') with gr.Column(elem_id="main_chat_interface", scale=0.5): chatbot = gr.Chatbot([], elem_id="chatbot") with gr.Row(elem_id="box_split"): with gr.Column(elem_id="enter_box",scale=0.85): txt = gr.Textbox( elem_id='input', show_label=False, placeholder="Enter text and press enter, or upload an image" ).style(container=False) txt.submit(append_user_message, [txt, chatbot], [txt, chatbot]) \ .then(send_message, [chatbot, temp, top_p, fp, pp], [chatbot]) with gr.Column(elem_id="send_box",scale=0.15, min_width=0): btn = gr.Button('Send', elem_id='send', variant='primary') btn.click(append_user_message, [txt, chatbot], [txt, chatbot]) \ .then(send_message, [chatbot, temp, top_p, fp, pp], [chatbot]) # with gr.Column(elem_id="main_chat_interface", scale=0.3): # with gr.Tab("Search Query"): # query_ref = gr.TextArea( # value='', # interactive=False, # elem_id='query_ref', # show_label=False, # ).style(container=False) # with gr.Tab("Prompt"): # prompt_ref = gr.TextArea( # value='', # interactive=False, # elem_id='prompt_ref', # show_label=False, # ).style(container=False) # print(query_ref, prompt_ref) demo.queue() if __name__ == "__main__": demo.launch()