File size: 6,523 Bytes
2afc3f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# based on https://github.com/hwchase17/langchain-gradio-template/blob/master/app.py
import collections
import os
from queue import Queue
from time import sleep
from typing import Any, Dict, List, Optional, Tuple

import gradio as gr
from anyio.from_thread import start_blocking_portal
from langchain import PromptTemplate
from langchain.callbacks.manager import AsyncCallbackManager
from langchain.chains import LLMChain
from langchain.chat_models import ChatOpenAI, PromptLayerChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.prompts import PromptTemplate
from langchain.prompts.base import DEFAULT_FORMATTER_MAPPING
from langchain.prompts.chat import (ChatPromptTemplate,
                                    HumanMessagePromptTemplate)
from langchain.schema import HumanMessage
from langchain.vectorstores import Chroma
from langchain.docstore.document import Document

from util import SyncStreamingLLMCallbackHandler, CustomOpenAIEmbeddings


def I(x):
    "Identity function; does nothing."
    return x

class PreprocessingPromptTemplate(PromptTemplate):
    arg_preprocessing: Dict = {} # this is probably the wrong type
    def format(self, **kwargs: Any) -> str:
        """Format the prompt with the inputs.

        Args:
            kwargs: Any arguments to be passed to the prompt template.

        Returns:
            A formatted string.

        Example:

        .. code-block:: python

            prompt.format(variable1="foo")
        """
        kwargs = self._merge_partial_and_user_variables(**kwargs)
        kwargs = self._preprocess_args(kwargs)
        return DEFAULT_FORMATTER_MAPPING[self.template_format](self.template, **kwargs)

    def _preprocess_args(self, args: dict):
        return {k: self.arg_preprocessing.get(k, I)(v) for k, v in args.items()}


def top_results_to_string(x: List[Tuple[Document, float]]):
    return "\n~~~\n".join(f"Result {i} Title: {doc.metadata['title']}\nResult {i} Content: {doc.page_content}" for i, (doc, score) in enumerate(x, 1))


PROMPT = """You are a helpful AI assistant that summarizes search results for users.
---
A user has searched for the following query:
{query}
---
The search engine returned the following 5 search results:
{top_results}
---
Based on the search results, answer the user's query, and use the same language as the user's query.
Say which search result you used.
Do not use information other than the search results.
Say 'No answer found.' if there are no relevant results.
Afterwards, say how confident you are in your answer as a percentage.
"""
PROMPT_TEMPLATE = PreprocessingPromptTemplate(template=PROMPT, input_variables=['query', 'top_results'])
PROMPT_TEMPLATE.arg_preprocessing['top_results'] = top_results_to_string

# TODO give relevance value in prompt
# TODO ask gpt to say which sources it used



# TODO azure?
COLLECTION = Chroma(
    embedding_function=CustomOpenAIEmbeddings(api_key=os.environ.get("OPENAI_API_KEY", None)),
    persist_directory="./.chroma",
    collection_name="CUHK",
    )
# COLLECTION = CHROMA_CLIENT.get_collection(name='CUHK')


def load_chain(api_type):
    shared_args = {
        "temperature": 0,
        "model_name": "gpt-3.5-turbo",
        "pl_tags": ["cuhk-demo"],
        "streaming": True,
    }
    if api_type == "OpenAI":
      chat = PromptLayerChatOpenAI(
          **shared_args,
          api_key = os.environ.get("OPENAI_API_KEY", None),
    )
    elif api_type == "Azure OpenAI":
      chat = PromptLayerChatOpenAI(
        api_type = "azure",
        api_key = os.environ.get("AZURE_OPENAI_API_KEY", None),
        api_base = os.environ.get("AZURE_OPENAI_API_BASE", None),
        api_version = os.environ.get("AZURE_OPENAI_API_VERSION", "2023-03-15-preview"),
        engine = os.environ.get("AZURE_OPENAI_DEPLOYMENT_NAME", None),
        **shared_args
      )

    chain = chain = LLMChain(llm=chat, prompt=PROMPT_TEMPLATE)
    return chat, chain

def initialize_chain(api_type):
    "Runs at app start"
    chat, chain = load_chain(api_type)
    return chat, chain

def change_chain(api_type, old_chain):
    chat, chain = load_chain(api_type)
    return chat, chain

def find_top_results(query):
    results = COLLECTION.similarity_search_with_score(query, k=4) # TODO filter by device (windows, mac, android, ios)

    output = "\n".join(f"1. [{d.metadata['title']}]({d.metadata['url']}) <small>(dist: {s})</small>" for d, s in results)
    return results, output

def ask_gpt(chain, query, top_results): # top_results: List[Tuple[Document, float]]
    q = Queue()
    job_done = object()
    def task():
        chain.run(
            query=query,
            top_results=top_results,
            callbacks=[SyncStreamingLLMCallbackHandler(q)],
            )
        q.put(job_done)
        return

    with start_blocking_portal() as portal:
        portal.start_task_soon(task)

        content = ""
        while True:
            next_token = q.get(True, timeout=15)
            if next_token is job_done:
                break
            content += next_token
            yield content


demo = gr.Blocks(css="""
#sidebar {
    max-width: 300px;
}
""")
with demo:
    with gr.Row():
        # sidebar
        with gr.Column(elem_id="sidebar"):
            api_type = gr.Radio(
                ["OpenAI", "Azure OpenAI"],
                value="OpenAI",
                label="Server",
                info="You can try changing this if responses are slow."
            )

        # main
        with gr.Column():
            # Company img
            gr.HTML(r'<div style="display: flex; justify-content: center; align-items: center"><a href="https://thinkcol.com/"><img src="./file=thinkcol-logo.png" alt="ThinkCol" width="357" height="87" /></a></div>')

            chat = gr.State()
            chain = gr.State()

            query = gr.Textbox(label="Search Query:")
            top_results_data = gr.State()
            top_results = gr.Markdown(label="Search Results")
            response = gr.Textbox(label="AI Response")


    load_event = demo.load(initialize_chain, [api_type], [chat, chain])

    query_event = query.submit(find_top_results, [query], [top_results_data, top_results])
    ask_event = query_event.then(ask_gpt, [chain, query, top_results_data], [response])
    api_type.change(change_chain,
                    [api_type, chain],
                    [chat, chain],
                    cancels=[load_event, query_event, ask_event])


demo.queue()
if __name__ == "__main__":
    demo.launch()