# based on https://github.com/hwchase17/langchain-gradio-template/blob/master/app.py import collections import os from queue import Queue from time import sleep from typing import Any, Dict, List, Optional, Tuple import gradio as gr from anyio.from_thread import start_blocking_portal from langchain import PromptTemplate from langchain.callbacks.manager import AsyncCallbackManager from langchain.chains import LLMChain from langchain.chat_models import ChatOpenAI, PromptLayerChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.prompts import PromptTemplate from langchain.prompts.base import DEFAULT_FORMATTER_MAPPING from langchain.prompts.chat import (ChatPromptTemplate, HumanMessagePromptTemplate) from langchain.schema import HumanMessage from langchain.vectorstores import Chroma from langchain.docstore.document import Document from util import SyncStreamingLLMCallbackHandler, CustomOpenAIEmbeddings def I(x): "Identity function; does nothing." return x class PreprocessingPromptTemplate(PromptTemplate): arg_preprocessing: Dict = {} # this is probably the wrong type def format(self, **kwargs: Any) -> str: """Format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. Example: .. code-block:: python prompt.format(variable1="foo") """ kwargs = self._merge_partial_and_user_variables(**kwargs) kwargs = self._preprocess_args(kwargs) return DEFAULT_FORMATTER_MAPPING[self.template_format](self.template, **kwargs) def _preprocess_args(self, args: dict): return {k: self.arg_preprocessing.get(k, I)(v) for k, v in args.items()} def top_results_to_string(x: List[Tuple[Document, float]]): return "\n~~~\n".join(f"Result {i} Title: {doc.metadata['title']}\nResult {i} Content: {doc.page_content}" for i, (doc, score) in enumerate(x, 1)) PROMPT = """You are a helpful AI assistant that summarizes search results for users. --- A user has searched for the following query: {query} --- The search engine returned the following 5 search results: {top_results} --- Based on the search results, answer the user's query, and use the same language as the user's query. Say which search result you used. Do not use information other than the search results. Say 'No answer found.' if there are no relevant results. Afterwards, say how confident you are in your answer as a percentage. """ PROMPT_TEMPLATE = PreprocessingPromptTemplate(template=PROMPT, input_variables=['query', 'top_results']) PROMPT_TEMPLATE.arg_preprocessing['top_results'] = top_results_to_string # TODO give relevance value in prompt # TODO ask gpt to say which sources it used # TODO azure? COLLECTION = Chroma( embedding_function=CustomOpenAIEmbeddings(api_key=os.environ.get("OPENAI_API_KEY", None)), persist_directory="./.chroma", collection_name="CUHK", ) # COLLECTION = CHROMA_CLIENT.get_collection(name='CUHK') def load_chain(api_type): shared_args = { "temperature": 0, "model_name": "gpt-3.5-turbo", "pl_tags": ["cuhk-demo"], "streaming": True, } if api_type == "OpenAI": chat = PromptLayerChatOpenAI( **shared_args, api_key = os.environ.get("OPENAI_API_KEY", None), ) elif api_type == "Azure OpenAI": chat = PromptLayerChatOpenAI( api_type = "azure", api_key = os.environ.get("AZURE_OPENAI_API_KEY", None), api_base = os.environ.get("AZURE_OPENAI_API_BASE", None), api_version = os.environ.get("AZURE_OPENAI_API_VERSION", "2023-03-15-preview"), engine = os.environ.get("AZURE_OPENAI_DEPLOYMENT_NAME", None), **shared_args ) chain = chain = LLMChain(llm=chat, prompt=PROMPT_TEMPLATE) return chat, chain def initialize_chain(api_type): "Runs at app start" chat, chain = load_chain(api_type) return chat, chain def change_chain(api_type, old_chain): chat, chain = load_chain(api_type) return chat, chain def find_top_results(query): results = COLLECTION.similarity_search_with_score(query, k=4) # TODO filter by device (windows, mac, android, ios) output = "\n".join(f"1. [{d.metadata['title']}]({d.metadata['url']}) (dist: {s})" for d, s in results) return results, output def ask_gpt(chain, query, top_results): # top_results: List[Tuple[Document, float]] q = Queue() job_done = object() def task(): chain.run( query=query, top_results=top_results, callbacks=[SyncStreamingLLMCallbackHandler(q)], ) q.put(job_done) return with start_blocking_portal() as portal: portal.start_task_soon(task) content = "" while True: next_token = q.get(True, timeout=15) if next_token is job_done: break content += next_token yield content demo = gr.Blocks(css=""" #sidebar { max-width: 300px; } """) with demo: with gr.Row(): # sidebar with gr.Column(elem_id="sidebar"): api_type = gr.Radio( ["OpenAI", "Azure OpenAI"], value="OpenAI", label="Server", info="You can try changing this if responses are slow." ) # main with gr.Column(): # Company img gr.HTML(r'
') chat = gr.State() chain = gr.State() query = gr.Textbox(label="Search Query:") top_results_data = gr.State() top_results = gr.Markdown(label="Search Results") response = gr.Textbox(label="AI Response") load_event = demo.load(initialize_chain, [api_type], [chat, chain]) query_event = query.submit(find_top_results, [query], [top_results_data, top_results]) ask_event = query_event.then(ask_gpt, [chain, query, top_results_data], [response]) api_type.change(change_chain, [api_type, chain], [chat, chain], cancels=[load_event, query_event, ask_event]) demo.queue() if __name__ == "__main__": demo.launch()