Spaces:
Running
Running
final: changelog
Browse files
app.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import requests
|
4 |
+
import gradio as gr
|
5 |
+
from agno.agent import Agent
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from typing import Dict, Optional
|
9 |
+
from firecrawl import FirecrawlApp
|
10 |
+
from pydantic import BaseModel, Field
|
11 |
+
from agno.models.openai import OpenAIChat
|
12 |
+
|
13 |
+
load_dotenv()
|
14 |
+
|
15 |
+
class AQIResponse(BaseModel):
|
16 |
+
success: bool
|
17 |
+
data: Dict[str, float]
|
18 |
+
status: str
|
19 |
+
expiresAt: str
|
20 |
+
|
21 |
+
class ExtractSchema(BaseModel):
|
22 |
+
aqi: float = Field(description = "Air Quality Index")
|
23 |
+
temperature: float = Field(description = "Temperature in Degree Celsius")
|
24 |
+
humidity: float = Field(description = "Humidity Percentage")
|
25 |
+
wind_speed: float = Field(description = "")
|
26 |
+
pm25:float = Field(description = "Particulate Matter 2.5 micrometers")
|
27 |
+
pm10:float = Field(description = "Particulate Matter 10 micrometers")
|
28 |
+
co: float = Field(description = "Carbon Monoxide Level")
|
29 |
+
|
30 |
+
@dataclass
|
31 |
+
class UserInput:
|
32 |
+
city: str
|
33 |
+
state: str
|
34 |
+
country: str
|
35 |
+
medical_conditions: Optional[str]
|
36 |
+
planned_activity: str
|
37 |
+
|
38 |
+
class AQIAnalyzer:
|
39 |
+
|
40 |
+
def __init__(self, firecrawl_key : str) -> None:
|
41 |
+
self.firecrawl = FirecrawlApp(api_key = firecrawl_key)
|
42 |
+
|
43 |
+
def _format_url(self, country : str, state: str, city: str) -> str:
|
44 |
+
"""Format URLs based on location, handling cases with and without state
|
45 |
+
"""
|
46 |
+
country_clean = country.lower().replace(" ", "-")
|
47 |
+
city_clean = city.lower().replace(" ", "-")
|
48 |
+
|
49 |
+
if not state or state.lower().replace(" ","-"):
|
50 |
+
return f"https://www.aqi.in/dashboard/{country_clean}/{city_clean}"
|
51 |
+
|
52 |
+
state_clean = state.lower().replace(" ", "-")
|
53 |
+
return f"https://www.aqi.in/dashboard/{country_clean}/{state_clean}/{city_clean}"
|
54 |
+
|
55 |
+
|
56 |
+
def fetch_aqi_data(self, city: str, state: str, country: str) -> tuple[Dict[str, float], str]:
|
57 |
+
"""Fetch API data using Firecrawl"""
|
58 |
+
try:
|
59 |
+
url = self._format_url(country, state, city)
|
60 |
+
info_msg = f"Accessing URL: {url}"
|
61 |
+
|
62 |
+
resp = self.firecrawl.extract(
|
63 |
+
urls = [f"{url}/*"],
|
64 |
+
params = {
|
65 |
+
"prompt" : "Extract the current real-time AQI, temperature, humidity, wind speed, PM2.5, PM10 and CO Levels from the page. Also extract the timestamp of the data.",
|
66 |
+
"schema": ExtractSchema.model_json_schema()
|
67 |
+
}
|
68 |
+
)
|
69 |
+
|
70 |
+
aqi_response = AQIResponse(**resp)
|
71 |
+
|
72 |
+
if not aqi_response.success:
|
73 |
+
raise requests.HTTPError(f"Failed to fetch AQI Data: {aqi_response.status}")
|
74 |
+
|
75 |
+
return aqi_response.data, info_msg
|
76 |
+
|
77 |
+
except Exception as e:
|
78 |
+
error_msg = f"Error Fetching AQI Data: {str(e)}"
|
79 |
+
return {
|
80 |
+
"api": 0,
|
81 |
+
"temperature": 0,
|
82 |
+
"humidity": 0,
|
83 |
+
"wind_speed": 0,
|
84 |
+
"pm25": 0,
|
85 |
+
"pm10": 0,
|
86 |
+
"co": 0
|
87 |
+
}, error_msg
|
88 |
+
|
89 |
+
class HealthRecommendationAgent:
|
90 |
+
|
91 |
+
def __init__(self, openai_key: str) -> Agent:
|
92 |
+
self.agent = Agent(
|
93 |
+
model = OpenAIChat(
|
94 |
+
id = "gpt-4.1-nano",
|
95 |
+
name = "Health Recommendation Agent",
|
96 |
+
api_key = openai_key
|
97 |
+
)
|
98 |
+
)
|
99 |
+
|
100 |
+
def _create_prompt(self, aqi_data: Dict[str, float], user_input: UserInput) -> str:
|
101 |
+
return f"""
|
102 |
+
Based on the following air quality condition in {user_input.city}, {user_input.state}, {user_input.country}:
|
103 |
+
- Overall AQI: {aqi_data["aqi"]}
|
104 |
+
- PM2.5 Level: {aqi_data["pm25"]} µg/m³
|
105 |
+
- PM10 Level: {aqi_data["pm10"]} µg/m³
|
106 |
+
- CO Level: {aqi_data["co"]} ppb
|
107 |
+
|
108 |
+
Weather Conditions:
|
109 |
+
- Temperature: {aqi_data["temperature"]}°C
|
110 |
+
- Humidity: {aqi_data["humidity"]}%
|
111 |
+
- Wind Speed: {aqi_data["co"]} ppb
|
112 |
+
"""
|
113 |
+
|
114 |
+
def get_recommendation(self, aqi_data: Dict[str, float], user_input: UserInput) -> str:
|
115 |
+
prompt = self._create_prompt(prompt)
|
116 |
+
resp = self.agent.run(prompt)
|
117 |
+
|
118 |
+
return resp.content
|
119 |
+
|
120 |
+
def analyze_conditions(city: str, state: str, country: str, medical_condition: str, planned_activity: str, firecrawl_key: str, openai_key: str) -> tuple[str, str, str, str]:
|
121 |
+
"""Analyze condition and return AQI data, recommendation, and status messages"""
|
122 |
+
try:
|
123 |
+
# initialize the analyzer
|
124 |
+
aqi_analyzer = AQIAnalyzer(firecrawl_key=firecrawl_key)
|
125 |
+
health_agent = HealthRecommendationAgent(openai_key = openai_key)
|
126 |
+
|
127 |
+
# Create user input
|
128 |
+
user_input = UserInput(
|
129 |
+
city = city,
|
130 |
+
state = state,
|
131 |
+
country = country,
|
132 |
+
medical_conditions = medical_condition,
|
133 |
+
planned_activity = planned_activity
|
134 |
+
)
|
135 |
+
|
136 |
+
# Get AQI Data
|
137 |
+
aqi_data, info_msg = aqi_analyzer.fetch_aqi_data(
|
138 |
+
city = user_input.city,
|
139 |
+
state = user_input.state,
|
140 |
+
country = user_input.country
|
141 |
+
)
|
142 |
+
|
143 |
+
# Format AQI data for display
|
144 |
+
aqi_json = json.dumps({
|
145 |
+
"Air Quality Index (AQI): ": aqi_data["aqi"],
|
146 |
+
"PM2.5: ":f"{aqi_data["pm25"]} µg/m³",
|
147 |
+
"PM10: ": f"{aqi_data["pm10"]} µg/m³",
|
148 |
+
"Carbon Monoxide (CO): " : f"{aqi_data["co"]} ppb",
|
149 |
+
"Temperature": f"{aqi_data['temperature']}°C",
|
150 |
+
"Humidity": f"{aqi_data['humidity']}%",
|
151 |
+
"Wind Speed": f"{aqi_data['wind_speed']} km/h"
|
152 |
+
}, indent=2)
|
153 |
+
|
154 |
+
# Get Recommendations
|
155 |
+
recommendations = health_agent.get_recommendation(aqi_data, user_input)
|
156 |
+
|
157 |
+
warning_msg = """
|
158 |
+
Note: The data shown may not match real-time values on the website.
|
159 |
+
This could be due to:
|
160 |
+
- Cached data in Firecrawl
|
161 |
+
- Rate Limiting
|
162 |
+
- Website updates not being captured
|
163 |
+
|
164 |
+
Consider refreshing or checking the website directly for real-time values
|
165 |
+
"""
|
166 |
+
|
167 |
+
return aqi_json, recommendations, info_msg, warning_msg
|
168 |
+
|
169 |
+
except Exception as e:
|
170 |
+
error_msg = f"Error Occured: {str(e)}"
|
171 |
+
return "", "Analysis Failed", error_msg, ""
|
172 |
+
|
173 |
+
def create_demo() -> gr.Blocks:
|
174 |
+
"""Create and configure the gradio interface"""
|
175 |
+
|
176 |
+
with gr.Blocks(title = "AQL Analysis and Recommendation Agent") as Demo:
|
177 |
+
gr.Markdown(
|
178 |
+
"""
|
179 |
+
AQI Analysis Agent
|
180 |
+
Get personalized health recommendations based on air quality conditions.
|
181 |
+
"""
|
182 |
+
)
|
183 |
+
|
184 |
+
# API Configurations
|
185 |
+
with gr.Accordion("API Configuration", open=False):
|
186 |
+
firecrawl_key = gr.Textbox(
|
187 |
+
label="Firecrawl API Key",
|
188 |
+
type="password",
|
189 |
+
placeholder="Enter your Firecrawl API Key"
|
190 |
+
)
|
191 |
+
|
192 |
+
openai_key = gr.Textbox(
|
193 |
+
label="OpenAI API Key",
|
194 |
+
type = "password",
|
195 |
+
placeholder="Enter your OpenAI API Key"
|
196 |
+
)
|
197 |
+
|
198 |
+
# Location Details
|
199 |
+
with gr.Row():
|
200 |
+
with gr.Column():
|
201 |
+
city = gr.Textbox(label="City", placeholder="eg. Mumbai")
|
202 |
+
state = gr.Textbox(
|
203 |
+
label="State",
|
204 |
+
placeholder="Leave blank for UT or US Cities",
|
205 |
+
value = ""
|
206 |
+
)
|
207 |
+
country = gr.Textbox(label="Country", value = "India")
|
208 |
+
# Personal Details
|
209 |
+
with gr.Row():
|
210 |
+
with gr.Column():
|
211 |
+
medical_conditions = gr.Textbox(
|
212 |
+
label="Medical Conditions (optional)",
|
213 |
+
placeholder="e.g., asthma, allergies",
|
214 |
+
lines=2
|
215 |
+
)
|
216 |
+
planned_activity = gr.Textbox(
|
217 |
+
label="Planned Activity",
|
218 |
+
placeholder="e.g., morning jog for 2 hours",
|
219 |
+
lines=2
|
220 |
+
)
|
221 |
+
|
222 |
+
# Status Messages
|
223 |
+
info_box = gr.Textbox(label="ℹ️ Status", interactive=False)
|
224 |
+
warning_box = gr.Textbox(label="⚠️ Warning", interactive=False)
|
225 |
+
|
226 |
+
# Output Areas
|
227 |
+
aqi_data_json = gr.JSON(label="Current Air Quality Data")
|
228 |
+
recommendations = gr.Markdown(label="Health Recommendations")
|
229 |
+
|
230 |
+
# Analyze Button
|
231 |
+
analyze_btn = gr.Button("🔍 Analyze & Get Recommendations", variant="primary")
|
232 |
+
analyze_btn.click(
|
233 |
+
fn=analyze_conditions,
|
234 |
+
inputs=[
|
235 |
+
city,
|
236 |
+
state,
|
237 |
+
country,
|
238 |
+
medical_conditions,
|
239 |
+
planned_activity,
|
240 |
+
firecrawl_key,
|
241 |
+
openai_key
|
242 |
+
],
|
243 |
+
outputs=[aqi_data_json, recommendations, info_box, warning_box]
|
244 |
+
)
|
245 |
+
|
246 |
+
# Examples
|
247 |
+
gr.Examples(
|
248 |
+
examples=[
|
249 |
+
["Mumbai", "Maharashtra", "India", "asthma", "morning walk for 30 minutes"],
|
250 |
+
["Delhi", "", "India", "", "outdoor yoga session"],
|
251 |
+
["New York", "", "United States", "allergies", "afternoon run"],
|
252 |
+
["Kakinada", "Andhra Pradesh", "India", "none", "Tennis for 2 hours"]
|
253 |
+
],
|
254 |
+
inputs=[city, state, country, medical_conditions, planned_activity]
|
255 |
+
)
|
256 |
+
|
257 |
+
return demo
|
258 |
+
|
259 |
+
if __name__ == "__main__":
|
260 |
+
demo = create_demo()
|
261 |
+
demo.launch(share=True)
|