Spaces:
Sleeping
Sleeping
Main Function for Customer Support Agent
Browse files- src/streamlit_app.py +201 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,203 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
})
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from openai import OpenAI
|
3 |
+
from mem0 import Memory
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
from datetime import datetime, timedelta
|
7 |
|
8 |
+
# Set up the Streamlit App
|
9 |
+
st.title("AI Customer Support Agent with Memory 🛒")
|
10 |
+
st.caption("Chat with a customer support assistant who remembers your past interactions.")
|
11 |
+
|
12 |
+
# Set the OpenAI API key
|
13 |
+
openai_api_key = st.text_input("Enter OpenAI API Key", type="password")
|
14 |
+
|
15 |
+
if openai_api_key:
|
16 |
+
os.environ['OPENAI_API_KEY'] = openai_api_key
|
17 |
+
|
18 |
+
class CustomerSupportAIAgent:
|
19 |
+
def __init__(self):
|
20 |
+
# Initialize Mem0 with Qdrant as the vector store
|
21 |
+
config = {
|
22 |
+
"vector_store": {
|
23 |
+
"provider": "qdrant",
|
24 |
+
"config": {
|
25 |
+
"host": "localhost",
|
26 |
+
"port": 6333,
|
27 |
+
}
|
28 |
+
},
|
29 |
+
}
|
30 |
+
try:
|
31 |
+
self.memory = Memory.from_config(config)
|
32 |
+
except Exception as e:
|
33 |
+
st.error(f"Failed to initialize memory: {e}")
|
34 |
+
st.stop() # Stop execution if memory initialization fails
|
35 |
+
|
36 |
+
self.client = OpenAI()
|
37 |
+
self.app_id = "customer-support"
|
38 |
+
|
39 |
+
def handle_query(self, query, user_id=None):
|
40 |
+
try:
|
41 |
+
# Search for relevant memories
|
42 |
+
relevant_memories = self.memory.search(query=query, user_id=user_id)
|
43 |
+
|
44 |
+
# Build context from relevant memories
|
45 |
+
context = "Relevant past information:\n"
|
46 |
+
if relevant_memories and "results" in relevant_memories:
|
47 |
+
for memory in relevant_memories["results"]:
|
48 |
+
if "memory" in memory:
|
49 |
+
context += f"- {memory['memory']}\n"
|
50 |
+
|
51 |
+
# Generate a response using OpenAI
|
52 |
+
full_prompt = f"{context}\nCustomer: {query}\nSupport Agent:"
|
53 |
+
response = self.client.chat.completions.create(
|
54 |
+
model="gpt-4",
|
55 |
+
messages=[
|
56 |
+
{"role": "system", "content": "You are a customer support AI agent for TechGadgets.com, an online electronics store."},
|
57 |
+
{"role": "user", "content": full_prompt}
|
58 |
+
]
|
59 |
+
)
|
60 |
+
answer = response.choices[0].message.content
|
61 |
+
|
62 |
+
# Add the query and answer to memory
|
63 |
+
self.memory.add(query, user_id=user_id, metadata={"app_id": self.app_id, "role": "user"})
|
64 |
+
self.memory.add(answer, user_id=user_id, metadata={"app_id": self.app_id, "role": "assistant"})
|
65 |
+
|
66 |
+
return answer
|
67 |
+
except Exception as e:
|
68 |
+
st.error(f"An error occurred while handling the query: {e}")
|
69 |
+
return "Sorry, I encountered an error. Please try again later."
|
70 |
+
|
71 |
+
def get_memories(self, user_id=None):
|
72 |
+
try:
|
73 |
+
# Retrieve all memories for a user
|
74 |
+
return self.memory.get_all(user_id=user_id)
|
75 |
+
except Exception as e:
|
76 |
+
st.error(f"Failed to retrieve memories: {e}")
|
77 |
+
return None
|
78 |
+
|
79 |
+
def generate_synthetic_data(self, user_id: str) -> dict | None:
|
80 |
+
try:
|
81 |
+
today = datetime.now()
|
82 |
+
order_date = (today - timedelta(days=10)).strftime("%B %d, %Y")
|
83 |
+
expected_delivery = (today + timedelta(days=2)).strftime("%B %d, %Y")
|
84 |
+
|
85 |
+
prompt = f"""Generate a detailed customer profile and order history for a TechGadgets.com customer with ID {user_id}. Include:
|
86 |
+
1. Customer name and basic info
|
87 |
+
2. A recent order of a high-end electronic device (placed on {order_date}, to be delivered by {expected_delivery})
|
88 |
+
3. Order details (product, price, order number)
|
89 |
+
4. Customer's shipping address
|
90 |
+
5. 2-3 previous orders from the past year
|
91 |
+
6. 2-3 customer service interactions related to these orders
|
92 |
+
7. Any preferences or patterns in their shopping behavior
|
93 |
+
|
94 |
+
Format the output as a JSON object."""
|
95 |
+
|
96 |
+
response = self.client.chat.completions.create(
|
97 |
+
model="gpt-4",
|
98 |
+
messages=[
|
99 |
+
{"role": "system", "content": "You are a data generation AI that creates realistic customer profiles and order histories. Always respond with valid JSON."},
|
100 |
+
{"role": "user", "content": prompt}
|
101 |
+
]
|
102 |
+
)
|
103 |
+
|
104 |
+
customer_data = json.loads(response.choices[0].message.content)
|
105 |
+
|
106 |
+
# Add generated data to memory
|
107 |
+
for key, value in customer_data.items():
|
108 |
+
if isinstance(value, list):
|
109 |
+
for item in value:
|
110 |
+
self.memory.add(
|
111 |
+
json.dumps(item),
|
112 |
+
user_id=user_id,
|
113 |
+
metadata={"app_id": self.app_id, "role": "system"}
|
114 |
+
)
|
115 |
+
else:
|
116 |
+
self.memory.add(
|
117 |
+
f"{key}: {json.dumps(value)}",
|
118 |
+
user_id=user_id,
|
119 |
+
metadata={"app_id": self.app_id, "role": "system"}
|
120 |
+
)
|
121 |
+
|
122 |
+
return customer_data
|
123 |
+
except Exception as e:
|
124 |
+
st.error(f"Failed to generate synthetic data: {e}")
|
125 |
+
return None
|
126 |
+
|
127 |
+
# Initialize the CustomerSupportAIAgent
|
128 |
+
support_agent = CustomerSupportAIAgent()
|
129 |
+
|
130 |
+
# Sidebar for customer ID and memory view
|
131 |
+
st.sidebar.title("Enter your Customer ID:")
|
132 |
+
previous_customer_id = st.session_state.get("previous_customer_id", None)
|
133 |
+
customer_id = st.sidebar.text_input("Enter your Customer ID")
|
134 |
+
|
135 |
+
if customer_id != previous_customer_id:
|
136 |
+
st.session_state.messages = []
|
137 |
+
st.session_state.previous_customer_id = customer_id
|
138 |
+
st.session_state.customer_data = None
|
139 |
+
|
140 |
+
# Add button to generate synthetic data
|
141 |
+
if st.sidebar.button("Generate Synthetic Data"):
|
142 |
+
if customer_id:
|
143 |
+
with st.spinner("Generating customer data..."):
|
144 |
+
st.session_state.customer_data = support_agent.generate_synthetic_data(customer_id)
|
145 |
+
if st.session_state.customer_data:
|
146 |
+
st.sidebar.success("Synthetic data generated successfully!")
|
147 |
+
else:
|
148 |
+
st.sidebar.error("Failed to generate synthetic data.")
|
149 |
+
else:
|
150 |
+
st.sidebar.error("Please enter a customer ID first.")
|
151 |
+
|
152 |
+
if st.sidebar.button("View Customer Profile"):
|
153 |
+
if st.session_state.customer_data:
|
154 |
+
st.sidebar.json(st.session_state.customer_data)
|
155 |
+
else:
|
156 |
+
st.sidebar.info("No customer data generated yet. Click 'Generate Synthetic Data' first.")
|
157 |
+
|
158 |
+
if st.sidebar.button("View Memory Info"):
|
159 |
+
if customer_id:
|
160 |
+
memories = support_agent.get_memories(user_id=customer_id)
|
161 |
+
if memories:
|
162 |
+
st.sidebar.write(f"Memory for customer **{customer_id}**:")
|
163 |
+
if memories and "results" in memories:
|
164 |
+
for memory in memories["results"]:
|
165 |
+
if "memory" in memory:
|
166 |
+
st.write(f"- {memory['memory']}")
|
167 |
+
else:
|
168 |
+
st.sidebar.info("No memory found for this customer ID.")
|
169 |
+
else:
|
170 |
+
st.sidebar.error("Please enter a customer ID to view memory info.")
|
171 |
+
|
172 |
+
# Initialize the chat history
|
173 |
+
if "messages" not in st.session_state:
|
174 |
+
st.session_state.messages = []
|
175 |
+
|
176 |
+
# Display the chat history
|
177 |
+
for message in st.session_state.messages:
|
178 |
+
with st.chat_message(message["role"]):
|
179 |
+
st.markdown(message["content"])
|
180 |
+
|
181 |
+
# Accept user input
|
182 |
+
query = st.chat_input("How can I assist you today?")
|
183 |
+
|
184 |
+
if query and customer_id:
|
185 |
+
# Add user message to chat history
|
186 |
+
st.session_state.messages.append({"role": "user", "content": query})
|
187 |
+
with st.chat_message("user"):
|
188 |
+
st.markdown(query)
|
189 |
+
|
190 |
+
# Generate and display response
|
191 |
+
with st.spinner("Generating response..."):
|
192 |
+
answer = support_agent.handle_query(query, user_id=customer_id)
|
193 |
+
|
194 |
+
# Add assistant response to chat history
|
195 |
+
st.session_state.messages.append({"role": "assistant", "content": answer})
|
196 |
+
with st.chat_message("assistant"):
|
197 |
+
st.markdown(answer)
|
198 |
+
|
199 |
+
elif not customer_id:
|
200 |
+
st.error("Please enter a customer ID to start the chat.")
|
201 |
+
|
202 |
+
else:
|
203 |
+
st.warning("Please enter your OpenAI API key to use the customer support agent.")
|