Spaces:
Sleeping
Sleeping
Code Updates
Browse files
app.py
CHANGED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
from langchain.chains import LLMChain
|
5 |
+
from langchain_core.prompts import PromptTemplate
|
6 |
+
|
7 |
+
# Load the Hugging Face API token from environment variables
|
8 |
+
hf_token = os.getenv('HF_TOKEN')
|
9 |
+
if hf_token is None:
|
10 |
+
raise ValueError("Hugging Face API token not found in environment variables.")
|
11 |
+
|
12 |
+
# Load the tokenizer and model using the API token
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B", use_auth_token=hf_token)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", use_auth_token=hf_token)
|
15 |
+
|
16 |
+
# Define your prompt template
|
17 |
+
prompt_template = PromptTemplate(
|
18 |
+
template="""
|
19 |
+
You are an AI language model trained to generate code for reinforcement learning models.
|
20 |
+
Given a description of a trading strategy, you need to generate a prompt that can be used to create code for a reinforcement learning model.
|
21 |
+
The prompt should be clear, concise, and include all necessary details to implement the strategy in code.
|
22 |
+
|
23 |
+
Here is the description of the trading strategy:
|
24 |
+
"{strategy}"
|
25 |
+
|
26 |
+
Based on this description, generate a proper prompt that can be used to create the code for a reinforcement learning model.
|
27 |
+
The prompt should include the following details:
|
28 |
+
1. The type of reinforcement learning algorithm to be used (e.g., Q-learning, DQN, PPO, etc.).
|
29 |
+
2. The main components of the algorithm (e.g., state space, action space, reward function).
|
30 |
+
3. Any specific libraries or tools that should be used (e.g., TensorFlow, PyTorch, OpenAI Gym).
|
31 |
+
4. Additional parameters or configurations that are important for the strategy.
|
32 |
+
|
33 |
+
Output the prompt in a way that another AI model can use to generate the code.
|
34 |
+
""",
|
35 |
+
input_variables=["strategy"]
|
36 |
+
)
|
37 |
+
|
38 |
+
chain = LLMChain(llm=model, prompt=prompt_template)
|
39 |
+
|
40 |
+
st.title("Text to Prompt Generator")
|
41 |
+
st.write("Enter some text and get a prompt for a reinforcement learning algorithm:")
|
42 |
+
|
43 |
+
text_input = st.text_area("Enter text here:")
|
44 |
+
|
45 |
+
if st.button("Generate Prompt"):
|
46 |
+
if text_input:
|
47 |
+
# Format the input into the template and generate the prompt
|
48 |
+
prompt = prompt_template.format(strategy=text_input)
|
49 |
+
st.write("Generated Prompt:")
|
50 |
+
st.write(prompt)
|
51 |
+
else:
|
52 |
+
st.write("Please enter some text to generate a prompt.")
|