|
|
|
import os |
|
from langchain.llms import OpenAI |
|
from langchain.prompts import PromptTemplate |
|
from langchain.chains import LLMChain |
|
from langchain.chains import SequentialChain |
|
from secret_key import openapi_key |
|
|
|
|
|
os.environ['OPENAI_API_KEY'] = openapi_key |
|
|
|
|
|
def generate_name(feild): |
|
prompt_template = PromptTemplate( |
|
input_variables=["feild"], |
|
template="I want to open a edtech organization for {feild} domain. Suggest a great name for this and the course structure to be followed.", |
|
) |
|
|
|
name_chain = LLMChain(llm = model, prompt = prompt_template, output_key = "organization_name") |
|
|
|
|
|
|
|
prompt_template = PromptTemplate( |
|
input_variables=["specifics"], |
|
template="Suggest me tips of how we can elevate the {specifics} for generative AI, and return it in comma seperated format", |
|
) |
|
|
|
specific_chain = LLMChain(llm = model, prompt = prompt_template, output_key = "tips") |
|
|
|
|
|
chain = SequentialChain( |
|
chains = [name_chain, specific_chain], |
|
input_variables = ["feild", "specifics"], |
|
output_variables = ["organization_name", "tips"] |
|
) |
|
|
|
resp = chain({"feild" : feild}) |
|
|
|
return resp |
|
|
|
|
|
if __name__ == "__main__": |
|
print(generate_name("Data Science")) |