# Import the necessary libraries needed for the operation import os from langchain.llms import OpenAI from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain.chains import SequentialChain from secret_key import openapi_key # Reading the OPEN API KEY os.environ['OPENAI_API_KEY'] = openapi_key # First chain of command: Name of the organization def generate_name(feild): prompt_template = PromptTemplate( input_variables=["feild"], template="I want to open a edtech organization for {feild} domain. Suggest a great name for this and the course structure to be followed.", ) name_chain = LLMChain(llm = model, prompt = prompt_template, output_key = "organization_name") # Second chain of command: Tips prompt_template = PromptTemplate( input_variables=["specifics"], template="Suggest me tips of how we can elevate the {specifics} for generative AI, and return it in comma seperated format", ) specific_chain = LLMChain(llm = model, prompt = prompt_template, output_key = "tips") chain = SequentialChain( chains = [name_chain, specific_chain], input_variables = ["feild", "specifics"], # Added "specifics" to the input variables output_variables = ["organization_name", "tips"] ) resp = chain({"feild" : feild}) return resp if __name__ == "__main__": print(generate_name("Data Science"))