Spaces:
Build error
Build error
File size: 30,619 Bytes
11c2c17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 |
from tkinter import filedialog, Tk
from easygui import msgbox
import os
import re
import gradio as gr
import easygui
import shutil
import sys
import json
from library.custom_logging import setup_logging
from datetime import datetime
# Set up logging
log = setup_logging()
folder_symbol = '\U0001f4c2' # 📂
refresh_symbol = '\U0001f504' # 🔄
save_style_symbol = '\U0001f4be' # 💾
document_symbol = '\U0001F4C4' # 📄
# define a list of substrings to search for v2 base models
V2_BASE_MODELS = [
'stabilityai/stable-diffusion-2-1-base/blob/main/v2-1_512-ema-pruned',
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
]
# define a list of substrings to search for v_parameterization models
V_PARAMETERIZATION_MODELS = [
'stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned',
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
]
# define a list of substrings to v1.x models
V1_MODELS = [
'CompVis/stable-diffusion-v1-4',
'runwayml/stable-diffusion-v1-5',
]
# define a list of substrings to search for SDXL base models
SDXL_MODELS = [
'stabilityai/stable-diffusion-xl-base-0.9',
'stabilityai/stable-diffusion-xl-refiner-0.9'
]
# define a list of substrings to search for
ALL_PRESET_MODELS = V2_BASE_MODELS + V_PARAMETERIZATION_MODELS + V1_MODELS + SDXL_MODELS
ENV_EXCLUSION = ['COLAB_GPU', 'RUNPOD_POD_ID']
def check_if_model_exist(
output_name, output_dir, save_model_as, headless=False
):
if headless:
log.info(
'Headless mode, skipping verification if model already exist... if model already exist it will be overwritten...'
)
return False
if save_model_as in ['diffusers', 'diffusers_safetendors']:
ckpt_folder = os.path.join(output_dir, output_name)
if os.path.isdir(ckpt_folder):
msg = f'A diffuser model with the same name {ckpt_folder} already exists. Do you want to overwrite it?'
if not easygui.ynbox(msg, 'Overwrite Existing Model?'):
log.info(
'Aborting training due to existing model with same name...'
)
return True
elif save_model_as in ['ckpt', 'safetensors']:
ckpt_file = os.path.join(output_dir, output_name + '.' + save_model_as)
if os.path.isfile(ckpt_file):
msg = f'A model with the same file name {ckpt_file} already exists. Do you want to overwrite it?'
if not easygui.ynbox(msg, 'Overwrite Existing Model?'):
log.info(
'Aborting training due to existing model with same name...'
)
return True
else:
log.info(
'Can\'t verify if existing model exist when save model is set a "same as source model", continuing to train model...'
)
return False
return False
def output_message(msg='', title='', headless=False):
if headless:
log.info(msg)
else:
msgbox(msg=msg, title=title)
def update_my_data(my_data):
# Update the optimizer based on the use_8bit_adam flag
use_8bit_adam = my_data.get('use_8bit_adam', False)
my_data.setdefault('optimizer', 'AdamW8bit' if use_8bit_adam else 'AdamW')
# Update model_list to custom if empty or pretrained_model_name_or_path is not a preset model
model_list = my_data.get('model_list', [])
pretrained_model_name_or_path = my_data.get(
'pretrained_model_name_or_path', ''
)
if (
not model_list
or pretrained_model_name_or_path not in ALL_PRESET_MODELS
):
my_data['model_list'] = 'custom'
# Convert values to int if they are strings
for key in ['epoch', 'save_every_n_epochs', 'lr_warmup']:
value = my_data.get(key, 0)
if isinstance(value, str) and value.strip().isdigit():
my_data[key] = int(value)
elif not value:
my_data[key] = 0
# Convert values to float if they are strings
for key in ['noise_offset', 'learning_rate', 'text_encoder_lr', 'unet_lr']:
value = my_data.get(key, 0)
if isinstance(value, str) and value.strip().isdigit():
my_data[key] = float(value)
elif not value:
my_data[key] = 0
# Update LoRA_type if it is set to LoCon
if my_data.get('LoRA_type', 'Standard') == 'LoCon':
my_data['LoRA_type'] = 'LyCORIS/LoCon'
# Update model save choices due to changes for LoRA and TI training
if 'save_model_as' in my_data:
if (
my_data.get('LoRA_type') or my_data.get('num_vectors_per_token')
) and my_data.get('save_model_as') not in ['safetensors', 'ckpt']:
message = 'Updating save_model_as to safetensors because the current value in the config file is no longer applicable to {}'
if my_data.get('LoRA_type'):
log.info(message.format('LoRA'))
if my_data.get('num_vectors_per_token'):
log.info(message.format('TI'))
my_data['save_model_as'] = 'safetensors'
return my_data
def get_dir_and_file(file_path):
dir_path, file_name = os.path.split(file_path)
return (dir_path, file_name)
def get_file_path(
file_path='', default_extension='.json', extension_name='Config files'
):
if (
not any(var in os.environ for var in ENV_EXCLUSION)
and sys.platform != 'darwin'
):
current_file_path = file_path
# log.info(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
# Create a hidden Tkinter root window
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
# Show the open file dialog and get the selected file path
file_path = filedialog.askopenfilename(
filetypes=(
(extension_name, f'*{default_extension}'),
('All files', '*.*'),
),
defaultextension=default_extension,
initialfile=initial_file,
initialdir=initial_dir,
)
# Destroy the hidden root window
root.destroy()
# If no file is selected, use the current file path
if not file_path:
file_path = current_file_path
current_file_path = file_path
# log.info(f'current file path: {current_file_path}')
return file_path
def get_any_file_path(file_path=''):
if (
not any(var in os.environ for var in ENV_EXCLUSION)
and sys.platform != 'darwin'
):
current_file_path = file_path
# log.info(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
file_path = filedialog.askopenfilename(
initialdir=initial_dir,
initialfile=initial_file,
)
root.destroy()
if file_path == '':
file_path = current_file_path
return file_path
def remove_doublequote(file_path):
if file_path != None:
file_path = file_path.replace('"', '')
return file_path
def get_folder_path(folder_path=''):
if (
not any(var in os.environ for var in ENV_EXCLUSION)
and sys.platform != 'darwin'
):
current_folder_path = folder_path
initial_dir, initial_file = get_dir_and_file(folder_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
folder_path = filedialog.askdirectory(initialdir=initial_dir)
root.destroy()
if folder_path == '':
folder_path = current_folder_path
return folder_path
def get_saveasfile_path(
file_path='', defaultextension='.json', extension_name='Config files'
):
if (
not any(var in os.environ for var in ENV_EXCLUSION)
and sys.platform != 'darwin'
):
current_file_path = file_path
# log.info(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
save_file_path = filedialog.asksaveasfile(
filetypes=(
(f'{extension_name}', f'{defaultextension}'),
('All files', '*'),
),
defaultextension=defaultextension,
initialdir=initial_dir,
initialfile=initial_file,
)
root.destroy()
# log.info(save_file_path)
if save_file_path == None:
file_path = current_file_path
else:
log.info(save_file_path.name)
file_path = save_file_path.name
# log.info(file_path)
return file_path
def get_saveasfilename_path(
file_path='', extensions='*', extension_name='Config files'
):
if (
not any(var in os.environ for var in ENV_EXCLUSION)
and sys.platform != 'darwin'
):
current_file_path = file_path
# log.info(f'current file path: {current_file_path}')
initial_dir, initial_file = get_dir_and_file(file_path)
root = Tk()
root.wm_attributes('-topmost', 1)
root.withdraw()
save_file_path = filedialog.asksaveasfilename(
filetypes=(
(f'{extension_name}', f'{extensions}'),
('All files', '*'),
),
defaultextension=extensions,
initialdir=initial_dir,
initialfile=initial_file,
)
root.destroy()
if save_file_path == '':
file_path = current_file_path
else:
# log.info(save_file_path)
file_path = save_file_path
return file_path
def add_pre_postfix(
folder: str = '',
prefix: str = '',
postfix: str = '',
caption_file_ext: str = '.caption',
) -> None:
"""
Add prefix and/or postfix to the content of caption files within a folder.
If no caption files are found, create one with the requested prefix and/or postfix.
Args:
folder (str): Path to the folder containing caption files.
prefix (str, optional): Prefix to add to the content of the caption files.
postfix (str, optional): Postfix to add to the content of the caption files.
caption_file_ext (str, optional): Extension of the caption files.
"""
if prefix == '' and postfix == '':
return
image_extensions = ('.jpg', '.jpeg', '.png', '.webp')
image_files = [
f for f in os.listdir(folder) if f.lower().endswith(image_extensions)
]
for image_file in image_files:
caption_file_name = os.path.splitext(image_file)[0] + caption_file_ext
caption_file_path = os.path.join(folder, caption_file_name)
if not os.path.exists(caption_file_path):
with open(caption_file_path, 'w', encoding='utf8') as f:
separator = ' ' if prefix and postfix else ''
f.write(f'{prefix}{separator}{postfix}')
else:
with open(caption_file_path, 'r+', encoding='utf8') as f:
content = f.read()
content = content.rstrip()
f.seek(0, 0)
prefix_separator = ' ' if prefix else ''
postfix_separator = ' ' if postfix else ''
f.write(
f'{prefix}{prefix_separator}{content}{postfix_separator}{postfix}'
)
def has_ext_files(folder_path: str, file_extension: str) -> bool:
"""
Check if there are any files with the specified extension in the given folder.
Args:
folder_path (str): Path to the folder containing files.
file_extension (str): Extension of the files to look for.
Returns:
bool: True if files with the specified extension are found, False otherwise.
"""
for file in os.listdir(folder_path):
if file.endswith(file_extension):
return True
return False
def find_replace(
folder_path: str = '',
caption_file_ext: str = '.caption',
search_text: str = '',
replace_text: str = '',
) -> None:
"""
Find and replace text in caption files within a folder.
Args:
folder_path (str, optional): Path to the folder containing caption files.
caption_file_ext (str, optional): Extension of the caption files.
search_text (str, optional): Text to search for in the caption files.
replace_text (str, optional): Text to replace the search text with.
"""
log.info('Running caption find/replace')
if not has_ext_files(folder_path, caption_file_ext):
msgbox(
f'No files with extension {caption_file_ext} were found in {folder_path}...'
)
return
if search_text == '':
return
caption_files = [
f for f in os.listdir(folder_path) if f.endswith(caption_file_ext)
]
for caption_file in caption_files:
with open(
os.path.join(folder_path, caption_file), 'r', errors='ignore'
) as f:
content = f.read()
content = content.replace(search_text, replace_text)
with open(os.path.join(folder_path, caption_file), 'w') as f:
f.write(content)
def color_aug_changed(color_aug):
if color_aug:
msgbox(
'Disabling "Cache latent" because "Color augmentation" has been selected...'
)
return gr.Checkbox.update(value=False, interactive=False)
else:
return gr.Checkbox.update(value=True, interactive=True)
def save_inference_file(output_dir, v2, v_parameterization, output_name):
# List all files in the directory
files = os.listdir(output_dir)
# Iterate over the list of files
for file in files:
# Check if the file starts with the value of output_name
if file.startswith(output_name):
# Check if it is a file or a directory
if os.path.isfile(os.path.join(output_dir, file)):
# Split the file name and extension
file_name, ext = os.path.splitext(file)
# Copy the v2-inference-v.yaml file to the current file, with a .yaml extension
if v2 and v_parameterization:
log.info(
f'Saving v2-inference-v.yaml as {output_dir}/{file_name}.yaml'
)
shutil.copy(
f'./v2_inference/v2-inference-v.yaml',
f'{output_dir}/{file_name}.yaml',
)
elif v2:
log.info(
f'Saving v2-inference.yaml as {output_dir}/{file_name}.yaml'
)
shutil.copy(
f'./v2_inference/v2-inference.yaml',
f'{output_dir}/{file_name}.yaml',
)
def set_pretrained_model_name_or_path_input(
model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl
):
# Check if the given model_list is in the list of SDXL models
if str(model_list) in SDXL_MODELS:
log.info('SDXL model selected. Setting sdxl parameters')
v2 = gr.Checkbox.update(value=False, visible=False)
v_parameterization = gr.Checkbox.update(value=False, visible=False)
sdxl = gr.Checkbox.update(value=True, visible=False)
pretrained_model_name_or_path = gr.Textbox.update(value=str(model_list), visible=False)
pretrained_model_name_or_path_file = gr.Button.update(visible=False)
pretrained_model_name_or_path_folder = gr.Button.update(visible=False)
return model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl
# Check if the given model_list is in the list of V2 base models
if str(model_list) in V2_BASE_MODELS:
log.info('SD v2 base model selected. Setting --v2 parameter')
v2 = gr.Checkbox.update(value=True, visible=False)
v_parameterization = gr.Checkbox.update(value=False, visible=False)
sdxl = gr.Checkbox.update(value=False, visible=False)
pretrained_model_name_or_path = gr.Textbox.update(value=str(model_list), visible=False)
pretrained_model_name_or_path_file = gr.Button.update(visible=False)
pretrained_model_name_or_path_folder = gr.Button.update(visible=False)
return model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl
# Check if the given model_list is in the list of V parameterization models
if str(model_list) in V_PARAMETERIZATION_MODELS:
log.info(
'SD v2 model selected. Setting --v2 and --v_parameterization parameters'
)
v2 = gr.Checkbox.update(value=True, visible=False)
v_parameterization = gr.Checkbox.update(value=True, visible=False)
sdxl = gr.Checkbox.update(value=False, visible=False)
pretrained_model_name_or_path = gr.Textbox.update(value=str(model_list), visible=False)
pretrained_model_name_or_path_file = gr.Button.update(visible=False)
pretrained_model_name_or_path_folder = gr.Button.update(visible=False)
return model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl
# Check if the given model_list is in the list of V1 models
if str(model_list) in V1_MODELS:
log.info(
'SD v1.4 model selected.'
)
v2 = gr.Checkbox.update(value=False, visible=False)
v_parameterization = gr.Checkbox.update(value=False, visible=False)
sdxl = gr.Checkbox.update(value=False, visible=False)
pretrained_model_name_or_path = gr.Textbox.update(value=str(model_list), visible=False)
pretrained_model_name_or_path_file = gr.Button.update(visible=False)
pretrained_model_name_or_path_folder = gr.Button.update(visible=False)
return model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl
# Check if the model_list is set to 'custom'
if model_list == 'custom':
v2 = gr.Checkbox.update(visible=True)
v_parameterization = gr.Checkbox.update(visible=True)
sdxl = gr.Checkbox.update(visible=True)
pretrained_model_name_or_path = gr.Textbox.update(visible=True)
pretrained_model_name_or_path_file = gr.Button.update(visible=True)
pretrained_model_name_or_path_folder = gr.Button.update(visible=True)
return model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl
###
### Gradio common GUI section
###
def get_pretrained_model_name_or_path_file(
model_list, pretrained_model_name_or_path
):
pretrained_model_name_or_path = get_any_file_path(
pretrained_model_name_or_path
)
# set_model_list(model_list, pretrained_model_name_or_path)
def get_int_or_default(kwargs, key, default_value=0):
value = kwargs.get(key, default_value)
if isinstance(value, int):
return value
elif isinstance(value, str):
return int(value)
elif isinstance(value, float):
return int(value)
else:
log.info(f'{key} is not an int, float or a string, setting value to {default_value}')
return default_value
def get_float_or_default(kwargs, key, default_value=0.0):
value = kwargs.get(key, default_value)
if isinstance(value, float):
return value
elif isinstance(value, int):
return float(value)
elif isinstance(value, str):
return float(value)
else:
log.info(f'{key} is not an int, float or a string, setting value to {default_value}')
return default_value
def get_str_or_default(kwargs, key, default_value=""):
value = kwargs.get(key, default_value)
if isinstance(value, str):
return value
elif isinstance(value, int):
return str(value)
elif isinstance(value, str):
return str(value)
else:
return default_value
def run_cmd_training(**kwargs):
run_cmd = ''
learning_rate = kwargs.get("learning_rate", "")
if learning_rate:
run_cmd += f' --learning_rate="{learning_rate}"'
lr_scheduler = kwargs.get("lr_scheduler", "")
if lr_scheduler:
run_cmd += f' --lr_scheduler="{lr_scheduler}"'
lr_warmup_steps = kwargs.get("lr_warmup_steps", "")
if lr_warmup_steps:
if lr_scheduler == 'constant':
log.info('Can\'t use LR warmup with LR Scheduler constant... ignoring...')
else:
run_cmd += f' --lr_warmup_steps="{lr_warmup_steps}"'
train_batch_size = kwargs.get("train_batch_size", "")
if train_batch_size:
run_cmd += f' --train_batch_size="{train_batch_size}"'
max_train_steps = kwargs.get("max_train_steps", "")
if max_train_steps:
run_cmd += f' --max_train_steps="{max_train_steps}"'
save_every_n_epochs = kwargs.get("save_every_n_epochs")
if save_every_n_epochs:
run_cmd += f' --save_every_n_epochs="{int(save_every_n_epochs)}"'
mixed_precision = kwargs.get("mixed_precision", "")
if mixed_precision:
run_cmd += f' --mixed_precision="{mixed_precision}"'
save_precision = kwargs.get("save_precision", "")
if save_precision:
run_cmd += f' --save_precision="{save_precision}"'
seed = kwargs.get("seed", "")
if seed != '':
run_cmd += f' --seed="{seed}"'
caption_extension = kwargs.get("caption_extension", "")
if caption_extension:
run_cmd += f' --caption_extension="{caption_extension}"'
cache_latents = kwargs.get('cache_latents')
if cache_latents:
run_cmd += ' --cache_latents'
cache_latents_to_disk = kwargs.get('cache_latents_to_disk')
if cache_latents_to_disk:
run_cmd += ' --cache_latents_to_disk'
optimizer_type = kwargs.get("optimizer", "AdamW")
run_cmd += f' --optimizer_type="{optimizer_type}"'
optimizer_args = kwargs.get("optimizer_args", "")
if optimizer_args != '':
run_cmd += f' --optimizer_args {optimizer_args}'
return run_cmd
def run_cmd_advanced_training(**kwargs):
run_cmd = ''
max_train_epochs = kwargs.get("max_train_epochs", "")
if max_train_epochs:
run_cmd += f' --max_train_epochs={max_train_epochs}'
max_data_loader_n_workers = kwargs.get("max_data_loader_n_workers", "")
if max_data_loader_n_workers:
run_cmd += f' --max_data_loader_n_workers="{max_data_loader_n_workers}"'
max_token_length = int(kwargs.get("max_token_length", 75))
if max_token_length > 75:
run_cmd += f' --max_token_length={max_token_length}'
clip_skip = int(kwargs.get("clip_skip", 1))
if clip_skip > 1:
run_cmd += f' --clip_skip={clip_skip}'
resume = kwargs.get("resume", "")
if resume:
run_cmd += f' --resume="{resume}"'
keep_tokens = int(kwargs.get("keep_tokens", 0))
if keep_tokens > 0:
run_cmd += f' --keep_tokens="{keep_tokens}"'
caption_dropout_every_n_epochs = int(kwargs.get("caption_dropout_every_n_epochs", 0))
if caption_dropout_every_n_epochs > 0:
run_cmd += f' --caption_dropout_every_n_epochs="{caption_dropout_every_n_epochs}"'
caption_dropout_rate = float(kwargs.get("caption_dropout_rate", 0))
if caption_dropout_rate > 0:
run_cmd += f' --caption_dropout_rate="{caption_dropout_rate}"'
vae_batch_size = int(kwargs.get("vae_batch_size", 0))
if vae_batch_size > 0:
run_cmd += f' --vae_batch_size="{vae_batch_size}"'
bucket_reso_steps = int(kwargs.get("bucket_reso_steps", 64))
run_cmd += f' --bucket_reso_steps={bucket_reso_steps}'
save_every_n_steps = int(kwargs.get("save_every_n_steps", 0))
if save_every_n_steps > 0:
run_cmd += f' --save_every_n_steps="{save_every_n_steps}"'
save_last_n_steps = int(kwargs.get("save_last_n_steps", 0))
if save_last_n_steps > 0:
run_cmd += f' --save_last_n_steps="{save_last_n_steps}"'
save_last_n_steps_state = int(kwargs.get("save_last_n_steps_state", 0))
if save_last_n_steps_state > 0:
run_cmd += f' --save_last_n_steps_state="{save_last_n_steps_state}"'
min_snr_gamma = int(kwargs.get("min_snr_gamma", 0))
if min_snr_gamma >= 1:
run_cmd += f' --min_snr_gamma={min_snr_gamma}'
min_timestep = int(kwargs.get("min_timestep", 0))
if min_timestep > 0:
run_cmd += f' --min_timestep={min_timestep}'
max_timestep = int(kwargs.get("max_timestep", 1000))
if max_timestep < 1000:
run_cmd += f' --max_timestep={max_timestep}'
save_state = kwargs.get('save_state')
if save_state:
run_cmd += ' --save_state'
mem_eff_attn = kwargs.get('mem_eff_attn')
if mem_eff_attn:
run_cmd += ' --mem_eff_attn'
color_aug = kwargs.get('color_aug')
if color_aug:
run_cmd += ' --color_aug'
flip_aug = kwargs.get('flip_aug')
if flip_aug:
run_cmd += ' --flip_aug'
shuffle_caption = kwargs.get('shuffle_caption')
if shuffle_caption:
run_cmd += ' --shuffle_caption'
gradient_checkpointing = kwargs.get('gradient_checkpointing')
if gradient_checkpointing:
run_cmd += ' --gradient_checkpointing'
full_fp16 = kwargs.get('full_fp16')
if full_fp16:
run_cmd += ' --full_fp16'
xformers = kwargs.get('xformers')
if xformers:
run_cmd += ' --xformers'
persistent_data_loader_workers = kwargs.get('persistent_data_loader_workers')
if persistent_data_loader_workers:
run_cmd += ' --persistent_data_loader_workers'
bucket_no_upscale = kwargs.get('bucket_no_upscale')
if bucket_no_upscale:
run_cmd += ' --bucket_no_upscale'
random_crop = kwargs.get('random_crop')
if random_crop:
run_cmd += ' --random_crop'
scale_v_pred_loss_like_noise_pred = kwargs.get('scale_v_pred_loss_like_noise_pred')
if scale_v_pred_loss_like_noise_pred:
run_cmd += ' --scale_v_pred_loss_like_noise_pred'
noise_offset_type = kwargs.get('noise_offset_type', 'Original')
if noise_offset_type == 'Original':
noise_offset = float(kwargs.get("noise_offset", 0))
if noise_offset > 0:
run_cmd += f' --noise_offset={noise_offset}'
adaptive_noise_scale = float(kwargs.get("adaptive_noise_scale", 0))
if adaptive_noise_scale != 0 and noise_offset > 0:
run_cmd += f' --adaptive_noise_scale={adaptive_noise_scale}'
else:
multires_noise_iterations = int(kwargs.get("multires_noise_iterations", 0))
if multires_noise_iterations > 0:
run_cmd += f' --multires_noise_iterations="{multires_noise_iterations}"'
multires_noise_discount = float(kwargs.get("multires_noise_discount", 0))
if multires_noise_discount > 0:
run_cmd += f' --multires_noise_discount="{multires_noise_discount}"'
additional_parameters = kwargs.get("additional_parameters", "")
if additional_parameters:
run_cmd += f' {additional_parameters}'
use_wandb = kwargs.get('use_wandb')
if use_wandb:
run_cmd += ' --log_with wandb'
wandb_api_key = kwargs.get("wandb_api_key", "")
if wandb_api_key:
run_cmd += f' --wandb_api_key="{wandb_api_key}"'
return run_cmd
def verify_image_folder_pattern(folder_path):
false_response = True # temporarily set to true to prevent stopping training in case of false positive
true_response = True
# Check if the folder exists
if not os.path.isdir(folder_path):
log.error(f"The provided path '{folder_path}' is not a valid folder. Please follow the folder structure documentation found at docs\image_folder_structure.md ...")
return false_response
# Create a regular expression pattern to match the required sub-folder names
# The pattern should start with one or more digits (\d+) followed by an underscore (_)
# After the underscore, it should match one or more word characters (\w+), which can be letters, numbers, or underscores
# Example of a valid pattern matching name: 123_example_folder
pattern = r'^\d+_\w+'
# Get the list of sub-folders in the directory
subfolders = [
os.path.join(folder_path, subfolder)
for subfolder in os.listdir(folder_path)
if os.path.isdir(os.path.join(folder_path, subfolder))
]
# Check the pattern of each sub-folder
matching_subfolders = [subfolder for subfolder in subfolders if re.match(pattern, os.path.basename(subfolder))]
# Print non-matching sub-folders
non_matching_subfolders = set(subfolders) - set(matching_subfolders)
if non_matching_subfolders:
log.error(f"The following folders do not match the required pattern <number>_<text>: {', '.join(non_matching_subfolders)}")
log.error(f"Please follow the folder structure documentation found at docs\image_folder_structure.md ...")
return false_response
# Check if no sub-folders exist
if not matching_subfolders:
log.error(f"No image folders found in {folder_path}. Please follow the folder structure documentation found at docs\image_folder_structure.md ...")
return false_response
log.info(f'Valid image folder names found in: {folder_path}')
return true_response
def SaveConfigFile(parameters, file_path: str, exclusion = ['file_path', 'save_as', 'headless', 'print_only']):
# Return the values of the variables as a dictionary
variables = {
name: value
for name, value in sorted(parameters, key=lambda x: x[0])
if name not in exclusion
}
# Save the data to the selected file
with open(file_path, 'w') as file:
json.dump(variables, file, indent=2)
def save_to_file(content):
file_path = 'logs/print_command.txt'
with open(file_path, 'a') as file:
file.write(content + '\n') |