File size: 30,619 Bytes
11c2c17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
from tkinter import filedialog, Tk
from easygui import msgbox
import os
import re
import gradio as gr
import easygui
import shutil
import sys
import json

from library.custom_logging import setup_logging
from datetime import datetime

# Set up logging
log = setup_logging()

folder_symbol = '\U0001f4c2'  # 📂
refresh_symbol = '\U0001f504'  # 🔄
save_style_symbol = '\U0001f4be'  # 💾
document_symbol = '\U0001F4C4'   # 📄

# define a list of substrings to search for v2 base models
V2_BASE_MODELS = [
    'stabilityai/stable-diffusion-2-1-base/blob/main/v2-1_512-ema-pruned',
    'stabilityai/stable-diffusion-2-1-base',
    'stabilityai/stable-diffusion-2-base',
]

# define a list of substrings to search for v_parameterization models
V_PARAMETERIZATION_MODELS = [
    'stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned',
    'stabilityai/stable-diffusion-2-1',
    'stabilityai/stable-diffusion-2',
]

# define a list of substrings to v1.x models
V1_MODELS = [
    'CompVis/stable-diffusion-v1-4',
    'runwayml/stable-diffusion-v1-5',
]

# define a list of substrings to search for SDXL base models
SDXL_MODELS = [
    'stabilityai/stable-diffusion-xl-base-0.9',
    'stabilityai/stable-diffusion-xl-refiner-0.9'
]

# define a list of substrings to search for
ALL_PRESET_MODELS = V2_BASE_MODELS + V_PARAMETERIZATION_MODELS + V1_MODELS + SDXL_MODELS

ENV_EXCLUSION = ['COLAB_GPU', 'RUNPOD_POD_ID']


def check_if_model_exist(
    output_name, output_dir, save_model_as, headless=False
):
    if headless:
        log.info(
            'Headless mode, skipping verification if model already exist... if model already exist it will be overwritten...'
        )
        return False

    if save_model_as in ['diffusers', 'diffusers_safetendors']:
        ckpt_folder = os.path.join(output_dir, output_name)
        if os.path.isdir(ckpt_folder):
            msg = f'A diffuser model with the same name {ckpt_folder} already exists. Do you want to overwrite it?'
            if not easygui.ynbox(msg, 'Overwrite Existing Model?'):
                log.info(
                    'Aborting training due to existing model with same name...'
                )
                return True
    elif save_model_as in ['ckpt', 'safetensors']:
        ckpt_file = os.path.join(output_dir, output_name + '.' + save_model_as)
        if os.path.isfile(ckpt_file):
            msg = f'A model with the same file name {ckpt_file} already exists. Do you want to overwrite it?'
            if not easygui.ynbox(msg, 'Overwrite Existing Model?'):
                log.info(
                    'Aborting training due to existing model with same name...'
                )
                return True
    else:
        log.info(
            'Can\'t verify if existing model exist when save model is set a "same as source model", continuing to train model...'
        )
        return False

    return False


def output_message(msg='', title='', headless=False):
    if headless:
        log.info(msg)
    else:
        msgbox(msg=msg, title=title)


def update_my_data(my_data):
    # Update the optimizer based on the use_8bit_adam flag
    use_8bit_adam = my_data.get('use_8bit_adam', False)
    my_data.setdefault('optimizer', 'AdamW8bit' if use_8bit_adam else 'AdamW')

    # Update model_list to custom if empty or pretrained_model_name_or_path is not a preset model
    model_list = my_data.get('model_list', [])
    pretrained_model_name_or_path = my_data.get(
        'pretrained_model_name_or_path', ''
    )
    if (
        not model_list
        or pretrained_model_name_or_path not in ALL_PRESET_MODELS
    ):
        my_data['model_list'] = 'custom'

    # Convert values to int if they are strings
    for key in ['epoch', 'save_every_n_epochs', 'lr_warmup']:
        value = my_data.get(key, 0)
        if isinstance(value, str) and value.strip().isdigit():
            my_data[key] = int(value)
        elif not value:
            my_data[key] = 0

    # Convert values to float if they are strings
    for key in ['noise_offset', 'learning_rate', 'text_encoder_lr', 'unet_lr']:
        value = my_data.get(key, 0)
        if isinstance(value, str) and value.strip().isdigit():
            my_data[key] = float(value)
        elif not value:
            my_data[key] = 0

    # Update LoRA_type if it is set to LoCon
    if my_data.get('LoRA_type', 'Standard') == 'LoCon':
        my_data['LoRA_type'] = 'LyCORIS/LoCon'

    # Update model save choices due to changes for LoRA and TI training
    if 'save_model_as' in my_data:
        if (
            my_data.get('LoRA_type') or my_data.get('num_vectors_per_token')
        ) and my_data.get('save_model_as') not in ['safetensors', 'ckpt']:
            message = 'Updating save_model_as to safetensors because the current value in the config file is no longer applicable to {}'
            if my_data.get('LoRA_type'):
                log.info(message.format('LoRA'))
            if my_data.get('num_vectors_per_token'):
                log.info(message.format('TI'))
            my_data['save_model_as'] = 'safetensors'

    return my_data


def get_dir_and_file(file_path):
    dir_path, file_name = os.path.split(file_path)
    return (dir_path, file_name)


def get_file_path(
    file_path='', default_extension='.json', extension_name='Config files'
):
    if (
        not any(var in os.environ for var in ENV_EXCLUSION)
        and sys.platform != 'darwin'
    ):
        current_file_path = file_path
        # log.info(f'current file path: {current_file_path}')

        initial_dir, initial_file = get_dir_and_file(file_path)

        # Create a hidden Tkinter root window
        root = Tk()
        root.wm_attributes('-topmost', 1)
        root.withdraw()

        # Show the open file dialog and get the selected file path
        file_path = filedialog.askopenfilename(
            filetypes=(
                (extension_name, f'*{default_extension}'),
                ('All files', '*.*'),
            ),
            defaultextension=default_extension,
            initialfile=initial_file,
            initialdir=initial_dir,
        )

        # Destroy the hidden root window
        root.destroy()

        # If no file is selected, use the current file path
        if not file_path:
            file_path = current_file_path
        current_file_path = file_path
        # log.info(f'current file path: {current_file_path}')

    return file_path


def get_any_file_path(file_path=''):
    if (
        not any(var in os.environ for var in ENV_EXCLUSION)
        and sys.platform != 'darwin'
    ):
        current_file_path = file_path
        # log.info(f'current file path: {current_file_path}')

        initial_dir, initial_file = get_dir_and_file(file_path)

        root = Tk()
        root.wm_attributes('-topmost', 1)
        root.withdraw()
        file_path = filedialog.askopenfilename(
            initialdir=initial_dir,
            initialfile=initial_file,
        )
        root.destroy()

        if file_path == '':
            file_path = current_file_path

    return file_path


def remove_doublequote(file_path):
    if file_path != None:
        file_path = file_path.replace('"', '')

    return file_path


def get_folder_path(folder_path=''):
    if (
        not any(var in os.environ for var in ENV_EXCLUSION)
        and sys.platform != 'darwin'
    ):
        current_folder_path = folder_path

        initial_dir, initial_file = get_dir_and_file(folder_path)

        root = Tk()
        root.wm_attributes('-topmost', 1)
        root.withdraw()
        folder_path = filedialog.askdirectory(initialdir=initial_dir)
        root.destroy()

        if folder_path == '':
            folder_path = current_folder_path

    return folder_path


def get_saveasfile_path(
    file_path='', defaultextension='.json', extension_name='Config files'
):
    if (
        not any(var in os.environ for var in ENV_EXCLUSION)
        and sys.platform != 'darwin'
    ):
        current_file_path = file_path
        # log.info(f'current file path: {current_file_path}')

        initial_dir, initial_file = get_dir_and_file(file_path)

        root = Tk()
        root.wm_attributes('-topmost', 1)
        root.withdraw()
        save_file_path = filedialog.asksaveasfile(
            filetypes=(
                (f'{extension_name}', f'{defaultextension}'),
                ('All files', '*'),
            ),
            defaultextension=defaultextension,
            initialdir=initial_dir,
            initialfile=initial_file,
        )
        root.destroy()

        # log.info(save_file_path)

        if save_file_path == None:
            file_path = current_file_path
        else:
            log.info(save_file_path.name)
            file_path = save_file_path.name

        # log.info(file_path)

    return file_path


def get_saveasfilename_path(
    file_path='', extensions='*', extension_name='Config files'
):
    if (
        not any(var in os.environ for var in ENV_EXCLUSION)
        and sys.platform != 'darwin'
    ):
        current_file_path = file_path
        # log.info(f'current file path: {current_file_path}')

        initial_dir, initial_file = get_dir_and_file(file_path)

        root = Tk()
        root.wm_attributes('-topmost', 1)
        root.withdraw()
        save_file_path = filedialog.asksaveasfilename(
            filetypes=(
                (f'{extension_name}', f'{extensions}'),
                ('All files', '*'),
            ),
            defaultextension=extensions,
            initialdir=initial_dir,
            initialfile=initial_file,
        )
        root.destroy()

        if save_file_path == '':
            file_path = current_file_path
        else:
            # log.info(save_file_path)
            file_path = save_file_path

    return file_path


def add_pre_postfix(
    folder: str = '',
    prefix: str = '',
    postfix: str = '',
    caption_file_ext: str = '.caption',
) -> None:
    """
    Add prefix and/or postfix to the content of caption files within a folder.
    If no caption files are found, create one with the requested prefix and/or postfix.

    Args:
        folder (str): Path to the folder containing caption files.
        prefix (str, optional): Prefix to add to the content of the caption files.
        postfix (str, optional): Postfix to add to the content of the caption files.
        caption_file_ext (str, optional): Extension of the caption files.
    """

    if prefix == '' and postfix == '':
        return

    image_extensions = ('.jpg', '.jpeg', '.png', '.webp')
    image_files = [
        f for f in os.listdir(folder) if f.lower().endswith(image_extensions)
    ]

    for image_file in image_files:
        caption_file_name = os.path.splitext(image_file)[0] + caption_file_ext
        caption_file_path = os.path.join(folder, caption_file_name)

        if not os.path.exists(caption_file_path):
            with open(caption_file_path, 'w', encoding='utf8') as f:
                separator = ' ' if prefix and postfix else ''
                f.write(f'{prefix}{separator}{postfix}')
        else:
            with open(caption_file_path, 'r+', encoding='utf8') as f:
                content = f.read()
                content = content.rstrip()
                f.seek(0, 0)

                prefix_separator = ' ' if prefix else ''
                postfix_separator = ' ' if postfix else ''
                f.write(
                    f'{prefix}{prefix_separator}{content}{postfix_separator}{postfix}'
                )


def has_ext_files(folder_path: str, file_extension: str) -> bool:
    """
    Check if there are any files with the specified extension in the given folder.

    Args:
        folder_path (str): Path to the folder containing files.
        file_extension (str): Extension of the files to look for.

    Returns:
        bool: True if files with the specified extension are found, False otherwise.
    """
    for file in os.listdir(folder_path):
        if file.endswith(file_extension):
            return True
    return False


def find_replace(
    folder_path: str = '',
    caption_file_ext: str = '.caption',
    search_text: str = '',
    replace_text: str = '',
) -> None:
    """
    Find and replace text in caption files within a folder.

    Args:
        folder_path (str, optional): Path to the folder containing caption files.
        caption_file_ext (str, optional): Extension of the caption files.
        search_text (str, optional): Text to search for in the caption files.
        replace_text (str, optional): Text to replace the search text with.
    """
    log.info('Running caption find/replace')

    if not has_ext_files(folder_path, caption_file_ext):
        msgbox(
            f'No files with extension {caption_file_ext} were found in {folder_path}...'
        )
        return

    if search_text == '':
        return

    caption_files = [
        f for f in os.listdir(folder_path) if f.endswith(caption_file_ext)
    ]

    for caption_file in caption_files:
        with open(
            os.path.join(folder_path, caption_file), 'r', errors='ignore'
        ) as f:
            content = f.read()

        content = content.replace(search_text, replace_text)

        with open(os.path.join(folder_path, caption_file), 'w') as f:
            f.write(content)


def color_aug_changed(color_aug):
    if color_aug:
        msgbox(
            'Disabling "Cache latent" because "Color augmentation" has been selected...'
        )
        return gr.Checkbox.update(value=False, interactive=False)
    else:
        return gr.Checkbox.update(value=True, interactive=True)


def save_inference_file(output_dir, v2, v_parameterization, output_name):
    # List all files in the directory
    files = os.listdir(output_dir)

    # Iterate over the list of files
    for file in files:
        # Check if the file starts with the value of output_name
        if file.startswith(output_name):
            # Check if it is a file or a directory
            if os.path.isfile(os.path.join(output_dir, file)):
                # Split the file name and extension
                file_name, ext = os.path.splitext(file)

                # Copy the v2-inference-v.yaml file to the current file, with a .yaml extension
                if v2 and v_parameterization:
                    log.info(
                        f'Saving v2-inference-v.yaml as {output_dir}/{file_name}.yaml'
                    )
                    shutil.copy(
                        f'./v2_inference/v2-inference-v.yaml',
                        f'{output_dir}/{file_name}.yaml',
                    )
                elif v2:
                    log.info(
                        f'Saving v2-inference.yaml as {output_dir}/{file_name}.yaml'
                    )
                    shutil.copy(
                        f'./v2_inference/v2-inference.yaml',
                        f'{output_dir}/{file_name}.yaml',
                    )


def set_pretrained_model_name_or_path_input(
    model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl
):
    # Check if the given model_list is in the list of SDXL models
    if str(model_list) in SDXL_MODELS:
        log.info('SDXL model selected. Setting sdxl parameters')
        v2 = gr.Checkbox.update(value=False, visible=False)
        v_parameterization = gr.Checkbox.update(value=False, visible=False)
        sdxl = gr.Checkbox.update(value=True, visible=False)
        pretrained_model_name_or_path = gr.Textbox.update(value=str(model_list), visible=False)
        pretrained_model_name_or_path_file = gr.Button.update(visible=False)
        pretrained_model_name_or_path_folder = gr.Button.update(visible=False)
        return model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl

    # Check if the given model_list is in the list of V2 base models
    if str(model_list) in V2_BASE_MODELS:
        log.info('SD v2 base model selected. Setting --v2 parameter')
        v2 = gr.Checkbox.update(value=True, visible=False)
        v_parameterization = gr.Checkbox.update(value=False, visible=False)
        sdxl = gr.Checkbox.update(value=False, visible=False)
        pretrained_model_name_or_path = gr.Textbox.update(value=str(model_list), visible=False)
        pretrained_model_name_or_path_file = gr.Button.update(visible=False)
        pretrained_model_name_or_path_folder = gr.Button.update(visible=False)
        return model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl

    # Check if the given model_list is in the list of V parameterization models
    if str(model_list) in V_PARAMETERIZATION_MODELS:
        log.info(
            'SD v2 model selected. Setting --v2 and --v_parameterization parameters'
        )
        v2 = gr.Checkbox.update(value=True, visible=False)
        v_parameterization = gr.Checkbox.update(value=True, visible=False)
        sdxl = gr.Checkbox.update(value=False, visible=False)
        pretrained_model_name_or_path = gr.Textbox.update(value=str(model_list), visible=False)
        pretrained_model_name_or_path_file = gr.Button.update(visible=False)
        pretrained_model_name_or_path_folder = gr.Button.update(visible=False)
        return model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl

    # Check if the given model_list is in the list of V1 models
    if str(model_list) in V1_MODELS:
        log.info(
            'SD v1.4 model selected.'
        )
        v2 = gr.Checkbox.update(value=False, visible=False)
        v_parameterization = gr.Checkbox.update(value=False, visible=False)
        sdxl = gr.Checkbox.update(value=False, visible=False)
        pretrained_model_name_or_path = gr.Textbox.update(value=str(model_list), visible=False)
        pretrained_model_name_or_path_file = gr.Button.update(visible=False)
        pretrained_model_name_or_path_folder = gr.Button.update(visible=False)
        return model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl

    # Check if the model_list is set to 'custom'
    if model_list == 'custom':
        v2 = gr.Checkbox.update(visible=True)
        v_parameterization = gr.Checkbox.update(visible=True)
        sdxl = gr.Checkbox.update(visible=True)
        pretrained_model_name_or_path = gr.Textbox.update(visible=True)
        pretrained_model_name_or_path_file = gr.Button.update(visible=True)
        pretrained_model_name_or_path_folder = gr.Button.update(visible=True)
        return model_list, pretrained_model_name_or_path, pretrained_model_name_or_path_file, pretrained_model_name_or_path_folder, v2, v_parameterization, sdxl


###
### Gradio common GUI section
###
 
def get_pretrained_model_name_or_path_file(
    model_list, pretrained_model_name_or_path
):
    pretrained_model_name_or_path = get_any_file_path(
        pretrained_model_name_or_path
    )
    # set_model_list(model_list, pretrained_model_name_or_path)


def get_int_or_default(kwargs, key, default_value=0):
    value = kwargs.get(key, default_value)
    if isinstance(value, int):
        return value
    elif isinstance(value, str):
        return int(value)
    elif isinstance(value, float):
        return int(value)
    else:
        log.info(f'{key} is not an int, float or a string, setting value to {default_value}')
        return default_value
    
def get_float_or_default(kwargs, key, default_value=0.0):
    value = kwargs.get(key, default_value)
    if isinstance(value, float):
        return value
    elif isinstance(value, int):
        return float(value)
    elif isinstance(value, str):
        return float(value)
    else:
        log.info(f'{key} is not an int, float or a string, setting value to {default_value}')
        return default_value

def get_str_or_default(kwargs, key, default_value=""):
    value = kwargs.get(key, default_value)
    if isinstance(value, str):
        return value
    elif isinstance(value, int):
        return str(value)
    elif isinstance(value, str):
        return str(value)
    else:
        return default_value

def run_cmd_training(**kwargs):
    run_cmd = ''
    
    learning_rate = kwargs.get("learning_rate", "")
    if learning_rate:
        run_cmd += f' --learning_rate="{learning_rate}"'
    
    lr_scheduler = kwargs.get("lr_scheduler", "")
    if lr_scheduler:
        run_cmd += f' --lr_scheduler="{lr_scheduler}"'
    
    lr_warmup_steps = kwargs.get("lr_warmup_steps", "")
    if lr_warmup_steps:
        if lr_scheduler == 'constant':
            log.info('Can\'t use LR warmup with LR Scheduler constant... ignoring...')
        else:
            run_cmd += f' --lr_warmup_steps="{lr_warmup_steps}"'
    
    train_batch_size = kwargs.get("train_batch_size", "")
    if train_batch_size:
        run_cmd += f' --train_batch_size="{train_batch_size}"'
    
    max_train_steps = kwargs.get("max_train_steps", "")
    if max_train_steps:
        run_cmd += f' --max_train_steps="{max_train_steps}"'
    
    save_every_n_epochs = kwargs.get("save_every_n_epochs")
    if save_every_n_epochs:
        run_cmd += f' --save_every_n_epochs="{int(save_every_n_epochs)}"'
    
    mixed_precision = kwargs.get("mixed_precision", "")
    if mixed_precision:
        run_cmd += f' --mixed_precision="{mixed_precision}"'
    
    save_precision = kwargs.get("save_precision", "")
    if save_precision:
        run_cmd += f' --save_precision="{save_precision}"'
    
    seed = kwargs.get("seed", "")
    if seed != '':
        run_cmd += f' --seed="{seed}"'
    
    caption_extension = kwargs.get("caption_extension", "")
    if caption_extension:
        run_cmd += f' --caption_extension="{caption_extension}"'
    
    cache_latents = kwargs.get('cache_latents')
    if cache_latents:
        run_cmd += ' --cache_latents'
    
    cache_latents_to_disk = kwargs.get('cache_latents_to_disk')
    if cache_latents_to_disk:
        run_cmd += ' --cache_latents_to_disk'
    
    optimizer_type = kwargs.get("optimizer", "AdamW")
    run_cmd += f' --optimizer_type="{optimizer_type}"'
    
    optimizer_args = kwargs.get("optimizer_args", "")
    if optimizer_args != '':
        run_cmd += f' --optimizer_args {optimizer_args}'
    
    return run_cmd


def run_cmd_advanced_training(**kwargs):
    run_cmd = ''
    
    max_train_epochs = kwargs.get("max_train_epochs", "")
    if max_train_epochs:
        run_cmd += f' --max_train_epochs={max_train_epochs}'
        
    max_data_loader_n_workers = kwargs.get("max_data_loader_n_workers", "")
    if max_data_loader_n_workers:
        run_cmd += f' --max_data_loader_n_workers="{max_data_loader_n_workers}"'
    
    max_token_length = int(kwargs.get("max_token_length", 75))
    if max_token_length > 75:
        run_cmd += f' --max_token_length={max_token_length}'
        
    clip_skip = int(kwargs.get("clip_skip", 1))
    if clip_skip > 1:
        run_cmd += f' --clip_skip={clip_skip}'
        
    resume = kwargs.get("resume", "")
    if resume:
        run_cmd += f' --resume="{resume}"'
        
    keep_tokens = int(kwargs.get("keep_tokens", 0))
    if keep_tokens > 0:
        run_cmd += f' --keep_tokens="{keep_tokens}"'
        
    caption_dropout_every_n_epochs = int(kwargs.get("caption_dropout_every_n_epochs", 0))
    if caption_dropout_every_n_epochs > 0:
        run_cmd += f' --caption_dropout_every_n_epochs="{caption_dropout_every_n_epochs}"'
    
    caption_dropout_rate = float(kwargs.get("caption_dropout_rate", 0))
    if caption_dropout_rate > 0:
        run_cmd += f' --caption_dropout_rate="{caption_dropout_rate}"'
        
    vae_batch_size = int(kwargs.get("vae_batch_size", 0))
    if vae_batch_size > 0:
        run_cmd += f' --vae_batch_size="{vae_batch_size}"'
        
    bucket_reso_steps = int(kwargs.get("bucket_reso_steps", 64))
    run_cmd += f' --bucket_reso_steps={bucket_reso_steps}'
        
    save_every_n_steps = int(kwargs.get("save_every_n_steps", 0))
    if save_every_n_steps > 0:
        run_cmd += f' --save_every_n_steps="{save_every_n_steps}"'
        
    save_last_n_steps = int(kwargs.get("save_last_n_steps", 0))
    if save_last_n_steps > 0:
        run_cmd += f' --save_last_n_steps="{save_last_n_steps}"'
        
    save_last_n_steps_state = int(kwargs.get("save_last_n_steps_state", 0))
    if save_last_n_steps_state > 0:
        run_cmd += f' --save_last_n_steps_state="{save_last_n_steps_state}"'
        
    min_snr_gamma = int(kwargs.get("min_snr_gamma", 0))
    if min_snr_gamma >= 1:
        run_cmd += f' --min_snr_gamma={min_snr_gamma}'
        
    min_timestep = int(kwargs.get("min_timestep", 0))
    if min_timestep > 0:
        run_cmd += f' --min_timestep={min_timestep}'
        
    max_timestep = int(kwargs.get("max_timestep", 1000))
    if max_timestep < 1000:
        run_cmd += f' --max_timestep={max_timestep}'
    
    save_state = kwargs.get('save_state')
    if save_state:
        run_cmd += ' --save_state'
        
    mem_eff_attn = kwargs.get('mem_eff_attn')
    if mem_eff_attn:
        run_cmd += ' --mem_eff_attn'
    
    color_aug = kwargs.get('color_aug')
    if color_aug:
        run_cmd += ' --color_aug'
    
    flip_aug = kwargs.get('flip_aug')
    if flip_aug:
        run_cmd += ' --flip_aug'
    
    shuffle_caption = kwargs.get('shuffle_caption')
    if shuffle_caption:
        run_cmd += ' --shuffle_caption'
    
    gradient_checkpointing = kwargs.get('gradient_checkpointing')
    if gradient_checkpointing:
        run_cmd += ' --gradient_checkpointing'
    
    full_fp16 = kwargs.get('full_fp16')
    if full_fp16:
        run_cmd += ' --full_fp16'
    
    xformers = kwargs.get('xformers')
    if xformers:
        run_cmd += ' --xformers'
    
    persistent_data_loader_workers = kwargs.get('persistent_data_loader_workers')
    if persistent_data_loader_workers:
        run_cmd += ' --persistent_data_loader_workers'
    
    bucket_no_upscale = kwargs.get('bucket_no_upscale')
    if bucket_no_upscale:
        run_cmd += ' --bucket_no_upscale'
    
    random_crop = kwargs.get('random_crop')
    if random_crop:
        run_cmd += ' --random_crop'
        
    scale_v_pred_loss_like_noise_pred = kwargs.get('scale_v_pred_loss_like_noise_pred')
    if scale_v_pred_loss_like_noise_pred:
        run_cmd += ' --scale_v_pred_loss_like_noise_pred'
        
    noise_offset_type = kwargs.get('noise_offset_type', 'Original')
    if noise_offset_type == 'Original':
        noise_offset = float(kwargs.get("noise_offset", 0))
        if noise_offset > 0:
            run_cmd += f' --noise_offset={noise_offset}'
        
        adaptive_noise_scale = float(kwargs.get("adaptive_noise_scale", 0))
        if adaptive_noise_scale != 0 and noise_offset > 0:
            run_cmd += f' --adaptive_noise_scale={adaptive_noise_scale}'
    else:
        multires_noise_iterations = int(kwargs.get("multires_noise_iterations", 0))
        if multires_noise_iterations > 0:
            run_cmd += f' --multires_noise_iterations="{multires_noise_iterations}"'
        
        multires_noise_discount = float(kwargs.get("multires_noise_discount", 0))
        if multires_noise_discount > 0:
            run_cmd += f' --multires_noise_discount="{multires_noise_discount}"'
    
    additional_parameters = kwargs.get("additional_parameters", "")
    if additional_parameters:
        run_cmd += f' {additional_parameters}'
    
    use_wandb = kwargs.get('use_wandb')
    if use_wandb:
        run_cmd += ' --log_with wandb'
    
    wandb_api_key = kwargs.get("wandb_api_key", "")
    if wandb_api_key:
        run_cmd += f' --wandb_api_key="{wandb_api_key}"'
        
    return run_cmd

def verify_image_folder_pattern(folder_path):
    false_response = True # temporarily set to true to prevent stopping training in case of false positive
    true_response = True

    # Check if the folder exists
    if not os.path.isdir(folder_path):
        log.error(f"The provided path '{folder_path}' is not a valid folder. Please follow the folder structure documentation found at docs\image_folder_structure.md ...")
        return false_response

    # Create a regular expression pattern to match the required sub-folder names
    # The pattern should start with one or more digits (\d+) followed by an underscore (_)
    # After the underscore, it should match one or more word characters (\w+), which can be letters, numbers, or underscores
    # Example of a valid pattern matching name: 123_example_folder
    pattern = r'^\d+_\w+'

    # Get the list of sub-folders in the directory
    subfolders = [
        os.path.join(folder_path, subfolder)
        for subfolder in os.listdir(folder_path)
        if os.path.isdir(os.path.join(folder_path, subfolder))
    ]

    # Check the pattern of each sub-folder
    matching_subfolders = [subfolder for subfolder in subfolders if re.match(pattern, os.path.basename(subfolder))]

    # Print non-matching sub-folders
    non_matching_subfolders = set(subfolders) - set(matching_subfolders)
    if non_matching_subfolders:
        log.error(f"The following folders do not match the required pattern <number>_<text>: {', '.join(non_matching_subfolders)}")
        log.error(f"Please follow the folder structure documentation found at docs\image_folder_structure.md ...")
        return false_response

    # Check if no sub-folders exist
    if not matching_subfolders:
        log.error(f"No image folders found in {folder_path}. Please follow the folder structure documentation found at docs\image_folder_structure.md ...")
        return false_response

    log.info(f'Valid image folder names found in: {folder_path}')
    return true_response

def SaveConfigFile(parameters, file_path: str, exclusion = ['file_path', 'save_as', 'headless', 'print_only']):
    # Return the values of the variables as a dictionary
    variables = {
        name: value
        for name, value in sorted(parameters, key=lambda x: x[0])
        if name not in exclusion
    }

    # Save the data to the selected file
    with open(file_path, 'w') as file:
        json.dump(variables, file, indent=2)
        
def save_to_file(content):
    file_path = 'logs/print_command.txt'
    with open(file_path, 'a') as file:
        file.write(content + '\n')