File size: 40,631 Bytes
11c2c17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
# Diffusersのコードをベースとした sd_xl_baseのU-Net
# state dictの形式をSDXLに合わせてある

"""
      target: sgm.modules.diffusionmodules.openaimodel.UNetModel
      params:
        adm_in_channels: 2816
        num_classes: sequential
        use_checkpoint: True
        in_channels: 4
        out_channels: 4
        model_channels: 320
        attention_resolutions: [4, 2]
        num_res_blocks: 2
        channel_mult: [1, 2, 4]
        num_head_channels: 64
        use_spatial_transformer: True
        use_linear_in_transformer: True
        transformer_depth: [1, 2, 10]  # note: the first is unused (due to attn_res starting at 2) 32, 16, 8 --> 64, 32, 16
        context_dim: 2048
        spatial_transformer_attn_type: softmax-xformers
        legacy: False
"""

import math
from types import SimpleNamespace
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import functional as F
from einops import rearrange


IN_CHANNELS: int = 4
OUT_CHANNELS: int = 4
ADM_IN_CHANNELS: int = 2816
CONTEXT_DIM: int = 2048
MODEL_CHANNELS: int = 320
TIME_EMBED_DIM = 320 * 4


# region memory effcient attention

# FlashAttentionを使うCrossAttention
# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py
# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE

# constants

EPSILON = 1e-6

# helper functions


def exists(val):
    return val is not None


def default(val, d):
    return val if exists(val) else d


# flash attention forwards and backwards

# https://arxiv.org/abs/2205.14135


class FlashAttentionFunction(torch.autograd.Function):
    @staticmethod
    @torch.no_grad()
    def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
        """Algorithm 2 in the paper"""

        device = q.device
        dtype = q.dtype
        max_neg_value = -torch.finfo(q.dtype).max
        qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)

        o = torch.zeros_like(q)
        all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device)
        all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device)

        scale = q.shape[-1] ** -0.5

        if not exists(mask):
            mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
        else:
            mask = rearrange(mask, "b n -> b 1 1 n")
            mask = mask.split(q_bucket_size, dim=-1)

        row_splits = zip(
            q.split(q_bucket_size, dim=-2),
            o.split(q_bucket_size, dim=-2),
            mask,
            all_row_sums.split(q_bucket_size, dim=-2),
            all_row_maxes.split(q_bucket_size, dim=-2),
        )

        for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
            q_start_index = ind * q_bucket_size - qk_len_diff

            col_splits = zip(
                k.split(k_bucket_size, dim=-2),
                v.split(k_bucket_size, dim=-2),
            )

            for k_ind, (kc, vc) in enumerate(col_splits):
                k_start_index = k_ind * k_bucket_size

                attn_weights = torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale

                if exists(row_mask):
                    attn_weights.masked_fill_(~row_mask, max_neg_value)

                if causal and q_start_index < (k_start_index + k_bucket_size - 1):
                    causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu(
                        q_start_index - k_start_index + 1
                    )
                    attn_weights.masked_fill_(causal_mask, max_neg_value)

                block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
                attn_weights -= block_row_maxes
                exp_weights = torch.exp(attn_weights)

                if exists(row_mask):
                    exp_weights.masked_fill_(~row_mask, 0.0)

                block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON)

                new_row_maxes = torch.maximum(block_row_maxes, row_maxes)

                exp_values = torch.einsum("... i j, ... j d -> ... i d", exp_weights, vc)

                exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
                exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)

                new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums

                oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values)

                row_maxes.copy_(new_row_maxes)
                row_sums.copy_(new_row_sums)

        ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
        ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes)

        return o

    @staticmethod
    @torch.no_grad()
    def backward(ctx, do):
        """Algorithm 4 in the paper"""

        causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
        q, k, v, o, l, m = ctx.saved_tensors

        device = q.device

        max_neg_value = -torch.finfo(q.dtype).max
        qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)

        dq = torch.zeros_like(q)
        dk = torch.zeros_like(k)
        dv = torch.zeros_like(v)

        row_splits = zip(
            q.split(q_bucket_size, dim=-2),
            o.split(q_bucket_size, dim=-2),
            do.split(q_bucket_size, dim=-2),
            mask,
            l.split(q_bucket_size, dim=-2),
            m.split(q_bucket_size, dim=-2),
            dq.split(q_bucket_size, dim=-2),
        )

        for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits):
            q_start_index = ind * q_bucket_size - qk_len_diff

            col_splits = zip(
                k.split(k_bucket_size, dim=-2),
                v.split(k_bucket_size, dim=-2),
                dk.split(k_bucket_size, dim=-2),
                dv.split(k_bucket_size, dim=-2),
            )

            for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
                k_start_index = k_ind * k_bucket_size

                attn_weights = torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale

                if causal and q_start_index < (k_start_index + k_bucket_size - 1):
                    causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu(
                        q_start_index - k_start_index + 1
                    )
                    attn_weights.masked_fill_(causal_mask, max_neg_value)

                exp_attn_weights = torch.exp(attn_weights - mc)

                if exists(row_mask):
                    exp_attn_weights.masked_fill_(~row_mask, 0.0)

                p = exp_attn_weights / lc

                dv_chunk = torch.einsum("... i j, ... i d -> ... j d", p, doc)
                dp = torch.einsum("... i d, ... j d -> ... i j", doc, vc)

                D = (doc * oc).sum(dim=-1, keepdims=True)
                ds = p * scale * (dp - D)

                dq_chunk = torch.einsum("... i j, ... j d -> ... i d", ds, kc)
                dk_chunk = torch.einsum("... i j, ... i d -> ... j d", ds, qc)

                dqc.add_(dq_chunk)
                dkc.add_(dk_chunk)
                dvc.add_(dv_chunk)

        return dq, dk, dv, None, None, None, None


# endregion


def get_parameter_dtype(parameter: torch.nn.Module):
    return next(parameter.parameters()).dtype


def get_parameter_device(parameter: torch.nn.Module):
    return next(parameter.parameters()).device


def get_timestep_embedding(
    timesteps: torch.Tensor,
    embedding_dim: int,
    downscale_freq_shift: float = 1,
    scale: float = 1,
    max_period: int = 10000,
):
    """
    This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.

    :param timesteps: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
    embeddings. :return: an [N x dim] Tensor of positional embeddings.
    """
    assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"

    half_dim = embedding_dim // 2
    exponent = -math.log(max_period) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device)
    exponent = exponent / (half_dim - downscale_freq_shift)

    emb = torch.exp(exponent)
    emb = timesteps[:, None].float() * emb[None, :]

    # scale embeddings
    emb = scale * emb

    # concat sine and cosine embeddings: flipped from Diffusers original ver because always flip_sin_to_cos=True
    emb = torch.cat([torch.cos(emb), torch.sin(emb)], dim=-1)

    # zero pad
    if embedding_dim % 2 == 1:
        emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
    return emb


class GroupNorm32(nn.GroupNorm):
    def forward(self, x):
        if self.weight.dtype != torch.float32:
            return super().forward(x)
        return super().forward(x.float()).type(x.dtype)


class ResnetBlock2D(nn.Module):
    def __init__(
        self,
        in_channels,
        out_channels,
    ):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels

        self.in_layers = nn.Sequential(
            GroupNorm32(32, in_channels),
            nn.SiLU(),
            nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1),
        )

        self.emb_layers = nn.Sequential(nn.SiLU(), nn.Linear(TIME_EMBED_DIM, out_channels))

        self.out_layers = nn.Sequential(
            GroupNorm32(32, out_channels),
            nn.SiLU(),
            nn.Identity(),  # to make state_dict compatible with original model
            nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
        )

        if in_channels != out_channels:
            self.skip_connection = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
        else:
            self.skip_connection = nn.Identity()

        self.gradient_checkpointing = False

    def forward_body(self, x, emb):
        h = self.in_layers(x)
        emb_out = self.emb_layers(emb).type(h.dtype)
        h = h + emb_out[:, :, None, None]
        h = self.out_layers(h)
        x = self.skip_connection(x)
        return x + h

    def forward(self, x, emb):
        if self.training and self.gradient_checkpointing:
            # print("ResnetBlock2D: gradient_checkpointing")

            def create_custom_forward(func):
                def custom_forward(*inputs):
                    return func(*inputs)

                return custom_forward

            x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.forward_body), x, emb)
        else:
            x = self.forward_body(x, emb)

        return x


class Downsample2D(nn.Module):
    def __init__(self, channels, out_channels):
        super().__init__()

        self.channels = channels
        self.out_channels = out_channels

        self.op = nn.Conv2d(self.channels, self.out_channels, 3, stride=2, padding=1)

        self.gradient_checkpointing = False

    def forward_body(self, hidden_states):
        assert hidden_states.shape[1] == self.channels
        hidden_states = self.op(hidden_states)

        return hidden_states

    def forward(self, hidden_states):
        if self.training and self.gradient_checkpointing:
            # print("Downsample2D: gradient_checkpointing")

            def create_custom_forward(func):
                def custom_forward(*inputs):
                    return func(*inputs)

                return custom_forward

            hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(self.forward_body), hidden_states)
        else:
            hidden_states = self.forward_body(hidden_states)

        return hidden_states


class CrossAttention(nn.Module):
    def __init__(
        self,
        query_dim: int,
        cross_attention_dim: Optional[int] = None,
        heads: int = 8,
        dim_head: int = 64,
        upcast_attention: bool = False,
    ):
        super().__init__()
        inner_dim = dim_head * heads
        cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
        self.upcast_attention = upcast_attention

        self.scale = dim_head**-0.5
        self.heads = heads

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=False)

        self.to_out = nn.ModuleList([])
        self.to_out.append(nn.Linear(inner_dim, query_dim))
        # no dropout here

        self.use_memory_efficient_attention_xformers = False
        self.use_memory_efficient_attention_mem_eff = False
        self.use_sdpa = False

    def set_use_memory_efficient_attention(self, xformers, mem_eff):
        self.use_memory_efficient_attention_xformers = xformers
        self.use_memory_efficient_attention_mem_eff = mem_eff

    def set_use_sdpa(self, sdpa):
        self.use_sdpa = sdpa

    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

    def forward(self, hidden_states, context=None, mask=None):
        if self.use_memory_efficient_attention_xformers:
            return self.forward_memory_efficient_xformers(hidden_states, context, mask)
        if self.use_memory_efficient_attention_mem_eff:
            return self.forward_memory_efficient_mem_eff(hidden_states, context, mask)
        if self.use_sdpa:
            return self.forward_sdpa(hidden_states, context, mask)

        query = self.to_q(hidden_states)
        context = context if context is not None else hidden_states
        key = self.to_k(context)
        value = self.to_v(context)

        query = self.reshape_heads_to_batch_dim(query)
        key = self.reshape_heads_to_batch_dim(key)
        value = self.reshape_heads_to_batch_dim(value)

        hidden_states = self._attention(query, key, value)

        # linear proj
        hidden_states = self.to_out[0](hidden_states)
        # hidden_states = self.to_out[1](hidden_states)     # no dropout
        return hidden_states

    def _attention(self, query, key, value):
        if self.upcast_attention:
            query = query.float()
            key = key.float()

        attention_scores = torch.baddbmm(
            torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
            query,
            key.transpose(-1, -2),
            beta=0,
            alpha=self.scale,
        )
        attention_probs = attention_scores.softmax(dim=-1)

        # cast back to the original dtype
        attention_probs = attention_probs.to(value.dtype)

        # compute attention output
        hidden_states = torch.bmm(attention_probs, value)

        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states

    # TODO support Hypernetworks
    def forward_memory_efficient_xformers(self, x, context=None, mask=None):
        import xformers.ops

        h = self.heads
        q_in = self.to_q(x)
        context = context if context is not None else x
        context = context.to(x.dtype)
        k_in = self.to_k(context)
        v_in = self.to_v(context)

        q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b n h d", h=h), (q_in, k_in, v_in))
        del q_in, k_in, v_in

        q = q.contiguous()
        k = k.contiguous()
        v = v.contiguous()
        out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)  # 最適なのを選んでくれる
        del q, k, v

        out = rearrange(out, "b n h d -> b n (h d)", h=h)

        out = self.to_out[0](out)
        return out

    def forward_memory_efficient_mem_eff(self, x, context=None, mask=None):
        flash_func = FlashAttentionFunction

        q_bucket_size = 512
        k_bucket_size = 1024

        h = self.heads
        q = self.to_q(x)
        context = context if context is not None else x
        context = context.to(x.dtype)
        k = self.to_k(context)
        v = self.to_v(context)
        del context, x

        q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))

        out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size)

        out = rearrange(out, "b h n d -> b n (h d)")

        out = self.to_out[0](out)
        return out

    def forward_sdpa(self, x, context=None, mask=None):
        h = self.heads
        q_in = self.to_q(x)
        context = context if context is not None else x
        context = context.to(x.dtype)
        k_in = self.to_k(context)
        v_in = self.to_v(context)

        q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q_in, k_in, v_in))
        del q_in, k_in, v_in

        out = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)

        out = rearrange(out, "b h n d -> b n (h d)", h=h)

        out = self.to_out[0](out)
        return out


# feedforward
class GEGLU(nn.Module):
    r"""
    A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.

    Parameters:
        dim_in (`int`): The number of channels in the input.
        dim_out (`int`): The number of channels in the output.
    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

    def gelu(self, gate):
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

    def forward(self, hidden_states):
        hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
        return hidden_states * self.gelu(gate)


class FeedForward(nn.Module):
    def __init__(
        self,
        dim: int,
    ):
        super().__init__()
        inner_dim = int(dim * 4)  # mult is always 4

        self.net = nn.ModuleList([])
        # project in
        self.net.append(GEGLU(dim, inner_dim))
        # project dropout
        self.net.append(nn.Identity())  # nn.Dropout(0)) # dummy for dropout with 0
        # project out
        self.net.append(nn.Linear(inner_dim, dim))

    def forward(self, hidden_states):
        for module in self.net:
            hidden_states = module(hidden_states)
        return hidden_states


class BasicTransformerBlock(nn.Module):
    def __init__(
        self, dim: int, num_attention_heads: int, attention_head_dim: int, cross_attention_dim: int, upcast_attention: bool = False
    ):
        super().__init__()

        self.gradient_checkpointing = False

        # 1. Self-Attn
        self.attn1 = CrossAttention(
            query_dim=dim,
            cross_attention_dim=None,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            upcast_attention=upcast_attention,
        )
        self.ff = FeedForward(dim)

        # 2. Cross-Attn
        self.attn2 = CrossAttention(
            query_dim=dim,
            cross_attention_dim=cross_attention_dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            upcast_attention=upcast_attention,
        )

        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)

        # 3. Feed-forward
        self.norm3 = nn.LayerNorm(dim)

    def set_use_memory_efficient_attention(self, xformers: bool, mem_eff: bool):
        self.attn1.set_use_memory_efficient_attention(xformers, mem_eff)
        self.attn2.set_use_memory_efficient_attention(xformers, mem_eff)

    def set_use_sdpa(self, sdpa: bool):
        self.attn1.set_use_sdpa(sdpa)
        self.attn2.set_use_sdpa(sdpa)

    def forward_body(self, hidden_states, context=None, timestep=None):
        # 1. Self-Attention
        norm_hidden_states = self.norm1(hidden_states)

        hidden_states = self.attn1(norm_hidden_states) + hidden_states

        # 2. Cross-Attention
        norm_hidden_states = self.norm2(hidden_states)
        hidden_states = self.attn2(norm_hidden_states, context=context) + hidden_states

        # 3. Feed-forward
        hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states

        return hidden_states

    def forward(self, hidden_states, context=None, timestep=None):
        if self.training and self.gradient_checkpointing:
            # print("BasicTransformerBlock: checkpointing")

            def create_custom_forward(func):
                def custom_forward(*inputs):
                    return func(*inputs)

                return custom_forward

            output = torch.utils.checkpoint.checkpoint(create_custom_forward(self.forward_body), hidden_states, context, timestep)
        else:
            output = self.forward_body(hidden_states, context, timestep)

        return output


class Transformer2DModel(nn.Module):
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        cross_attention_dim: Optional[int] = None,
        use_linear_projection: bool = False,
        upcast_attention: bool = False,
        num_transformer_layers: int = 1,
    ):
        super().__init__()
        self.in_channels = in_channels
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim
        self.use_linear_projection = use_linear_projection

        self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
        # self.norm = GroupNorm32(32, in_channels, eps=1e-6, affine=True)

        if use_linear_projection:
            self.proj_in = nn.Linear(in_channels, inner_dim)
        else:
            self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)

        blocks = []
        for _ in range(num_transformer_layers):
            blocks.append(
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    cross_attention_dim=cross_attention_dim,
                    upcast_attention=upcast_attention,
                )
            )

        self.transformer_blocks = nn.ModuleList(blocks)

        if use_linear_projection:
            self.proj_out = nn.Linear(in_channels, inner_dim)
        else:
            self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)

        self.gradient_checkpointing = False

    def set_use_memory_efficient_attention(self, xformers, mem_eff):
        for transformer in self.transformer_blocks:
            transformer.set_use_memory_efficient_attention(xformers, mem_eff)

    def set_use_sdpa(self, sdpa):
        for transformer in self.transformer_blocks:
            transformer.set_use_sdpa(sdpa)

    def forward(self, hidden_states, encoder_hidden_states=None, timestep=None):
        # 1. Input
        batch, _, height, weight = hidden_states.shape
        residual = hidden_states

        hidden_states = self.norm(hidden_states)
        if not self.use_linear_projection:
            hidden_states = self.proj_in(hidden_states)
            inner_dim = hidden_states.shape[1]
            hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
        else:
            inner_dim = hidden_states.shape[1]
            hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
            hidden_states = self.proj_in(hidden_states)

        # 2. Blocks
        for block in self.transformer_blocks:
            hidden_states = block(hidden_states, context=encoder_hidden_states, timestep=timestep)

        # 3. Output
        if not self.use_linear_projection:
            hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
            hidden_states = self.proj_out(hidden_states)
        else:
            hidden_states = self.proj_out(hidden_states)
            hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()

        output = hidden_states + residual

        return output

    def forward_xxx(self, hidden_states, encoder_hidden_states=None, timestep=None):
        if self.training and self.gradient_checkpointing:
            # print("Transformer2DModel: Using gradient checkpointing")

            def create_custom_forward(func):
                def custom_forward(*inputs):
                    return func(*inputs)

                return custom_forward

            output = torch.utils.checkpoint.checkpoint(
                create_custom_forward(self.forward_body), hidden_states, encoder_hidden_states, timestep
            )
        else:
            output = self.forward_body(hidden_states, encoder_hidden_states, timestep)

        return output


class Upsample2D(nn.Module):
    def __init__(self, channels, out_channels):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels
        self.conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1)

        self.gradient_checkpointing = False

    def forward_body(self, hidden_states, output_size=None):
        assert hidden_states.shape[1] == self.channels

        # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
        # TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
        # https://github.com/pytorch/pytorch/issues/86679
        dtype = hidden_states.dtype
        if dtype == torch.bfloat16:
            hidden_states = hidden_states.to(torch.float32)

        # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
        if hidden_states.shape[0] >= 64:
            hidden_states = hidden_states.contiguous()

        # if `output_size` is passed we force the interpolation output size and do not make use of `scale_factor=2`
        if output_size is None:
            hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
        else:
            hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")

        # If the input is bfloat16, we cast back to bfloat16
        if dtype == torch.bfloat16:
            hidden_states = hidden_states.to(dtype)

        hidden_states = self.conv(hidden_states)

        return hidden_states

    def forward(self, hidden_states, output_size=None):
        if self.training and self.gradient_checkpointing:
            # print("Upsample2D: gradient_checkpointing")

            def create_custom_forward(func):
                def custom_forward(*inputs):
                    return func(*inputs)

                return custom_forward

            hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(self.forward_body), hidden_states, output_size)
        else:
            hidden_states = self.forward_body(hidden_states, output_size)

        return hidden_states


class SdxlUNet2DConditionModel(nn.Module):
    _supports_gradient_checkpointing = True

    def __init__(
        self,
        **kwargs,
    ):
        super().__init__()

        self.in_channels = IN_CHANNELS
        self.out_channels = OUT_CHANNELS
        self.model_channels = MODEL_CHANNELS
        self.time_embed_dim = TIME_EMBED_DIM
        self.adm_in_channels = ADM_IN_CHANNELS

        self.gradient_checkpointing = False
        # self.sample_size = sample_size

        # time embedding
        self.time_embed = nn.Sequential(
            nn.Linear(self.model_channels, self.time_embed_dim),
            nn.SiLU(),
            nn.Linear(self.time_embed_dim, self.time_embed_dim),
        )

        # label embedding
        self.label_emb = nn.Sequential(
            nn.Sequential(
                nn.Linear(self.adm_in_channels, self.time_embed_dim),
                nn.SiLU(),
                nn.Linear(self.time_embed_dim, self.time_embed_dim),
            )
        )

        # input
        self.input_blocks = nn.ModuleList(
            [
                nn.Sequential(
                    nn.Conv2d(self.in_channels, self.model_channels, kernel_size=3, padding=(1, 1)),
                )
            ]
        )

        # level 0
        for i in range(2):
            layers = [
                ResnetBlock2D(
                    in_channels=1 * self.model_channels,
                    out_channels=1 * self.model_channels,
                ),
            ]
            self.input_blocks.append(nn.ModuleList(layers))

        self.input_blocks.append(
            nn.Sequential(
                Downsample2D(
                    channels=1 * self.model_channels,
                    out_channels=1 * self.model_channels,
                ),
            )
        )

        # level 1
        for i in range(2):
            layers = [
                ResnetBlock2D(
                    in_channels=(1 if i == 0 else 2) * self.model_channels,
                    out_channels=2 * self.model_channels,
                ),
                Transformer2DModel(
                    num_attention_heads=2 * self.model_channels // 64,
                    attention_head_dim=64,
                    in_channels=2 * self.model_channels,
                    num_transformer_layers=2,
                    use_linear_projection=True,
                    cross_attention_dim=2048,
                ),
            ]
            self.input_blocks.append(nn.ModuleList(layers))

        self.input_blocks.append(
            nn.Sequential(
                Downsample2D(
                    channels=2 * self.model_channels,
                    out_channels=2 * self.model_channels,
                ),
            )
        )

        # level 2
        for i in range(2):
            layers = [
                ResnetBlock2D(
                    in_channels=(2 if i == 0 else 4) * self.model_channels,
                    out_channels=4 * self.model_channels,
                ),
                Transformer2DModel(
                    num_attention_heads=4 * self.model_channels // 64,
                    attention_head_dim=64,
                    in_channels=4 * self.model_channels,
                    num_transformer_layers=10,
                    use_linear_projection=True,
                    cross_attention_dim=2048,
                ),
            ]
            self.input_blocks.append(nn.ModuleList(layers))

        # mid
        self.middle_block = nn.ModuleList(
            [
                ResnetBlock2D(
                    in_channels=4 * self.model_channels,
                    out_channels=4 * self.model_channels,
                ),
                Transformer2DModel(
                    num_attention_heads=4 * self.model_channels // 64,
                    attention_head_dim=64,
                    in_channels=4 * self.model_channels,
                    num_transformer_layers=10,
                    use_linear_projection=True,
                    cross_attention_dim=2048,
                ),
                ResnetBlock2D(
                    in_channels=4 * self.model_channels,
                    out_channels=4 * self.model_channels,
                ),
            ]
        )

        # output
        self.output_blocks = nn.ModuleList([])

        # level 2
        for i in range(3):
            layers = [
                ResnetBlock2D(
                    in_channels=4 * self.model_channels + (4 if i <= 1 else 2) * self.model_channels,
                    out_channels=4 * self.model_channels,
                ),
                Transformer2DModel(
                    num_attention_heads=4 * self.model_channels // 64,
                    attention_head_dim=64,
                    in_channels=4 * self.model_channels,
                    num_transformer_layers=10,
                    use_linear_projection=True,
                    cross_attention_dim=2048,
                ),
            ]
            if i == 2:
                layers.append(
                    Upsample2D(
                        channels=4 * self.model_channels,
                        out_channels=4 * self.model_channels,
                    )
                )

            self.output_blocks.append(nn.ModuleList(layers))

        # level 1
        for i in range(3):
            layers = [
                ResnetBlock2D(
                    in_channels=2 * self.model_channels + (4 if i == 0 else (2 if i == 1 else 1)) * self.model_channels,
                    out_channels=2 * self.model_channels,
                ),
                Transformer2DModel(
                    num_attention_heads=2 * self.model_channels // 64,
                    attention_head_dim=64,
                    in_channels=2 * self.model_channels,
                    num_transformer_layers=2,
                    use_linear_projection=True,
                    cross_attention_dim=2048,
                ),
            ]
            if i == 2:
                layers.append(
                    Upsample2D(
                        channels=2 * self.model_channels,
                        out_channels=2 * self.model_channels,
                    )
                )

            self.output_blocks.append(nn.ModuleList(layers))

        # level 0
        for i in range(3):
            layers = [
                ResnetBlock2D(
                    in_channels=1 * self.model_channels + (2 if i == 0 else 1) * self.model_channels,
                    out_channels=1 * self.model_channels,
                ),
            ]

            self.output_blocks.append(nn.ModuleList(layers))

        # output
        self.out = nn.ModuleList(
            [GroupNorm32(32, self.model_channels), nn.SiLU(), nn.Conv2d(self.model_channels, self.out_channels, 3, padding=1)]
        )

    # region diffusers compatibility
    def prepare_config(self):
        self.config = SimpleNamespace()

    @property
    def dtype(self) -> torch.dtype:
        # `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
        return get_parameter_dtype(self)

    @property
    def device(self) -> torch.device:
        # `torch.device`: The device on which the module is (assuming that all the module parameters are on the same device).
        return get_parameter_device(self)

    def set_attention_slice(self, slice_size):
        raise NotImplementedError("Attention slicing is not supported for this model.")

    def is_gradient_checkpointing(self) -> bool:
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

    def enable_gradient_checkpointing(self):
        self.gradient_checkpointing = True
        self.set_gradient_checkpointing(value=True)

    def disable_gradient_checkpointing(self):
        self.gradient_checkpointing = False
        self.set_gradient_checkpointing(value=False)

    def set_use_memory_efficient_attention(self, xformers: bool, mem_eff: bool) -> None:
        blocks = self.input_blocks + [self.middle_block] + self.output_blocks
        for block in blocks:
            for module in block:
                if hasattr(module, "set_use_memory_efficient_attention"):
                    # print(module.__class__.__name__)
                    module.set_use_memory_efficient_attention(xformers, mem_eff)

    def set_use_sdpa(self, sdpa: bool) -> None:
        blocks = self.input_blocks + [self.middle_block] + self.output_blocks
        for block in blocks:
            for module in block:
                if hasattr(module, "set_use_sdpa"):
                    module.set_use_sdpa(sdpa)

    def set_gradient_checkpointing(self, value=False):
        blocks = self.input_blocks + [self.middle_block] + self.output_blocks
        for block in blocks:
            for module in block.modules():
                if hasattr(module, "gradient_checkpointing"):
                    # print(module.__class__.__name__, module.gradient_checkpointing, "->", value)
                    module.gradient_checkpointing = value

    # endregion

    def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
        # broadcast timesteps to batch dimension
        timesteps = timesteps.expand(x.shape[0])

        hs = []
        t_emb = get_timestep_embedding(timesteps, self.model_channels)  # , repeat_only=False)
        t_emb = t_emb.to(x.dtype)
        emb = self.time_embed(t_emb)

        assert x.shape[0] == y.shape[0], f"batch size mismatch: {x.shape[0]} != {y.shape[0]}"
        assert x.dtype == y.dtype, f"dtype mismatch: {x.dtype} != {y.dtype}"
        # assert x.dtype == self.dtype
        emb = emb + self.label_emb(y)

        def call_module(module, h, emb, context):
            x = h
            for layer in module:
                # print(layer.__class__.__name__, x.dtype, emb.dtype, context.dtype if context is not None else None)
                if isinstance(layer, ResnetBlock2D):
                    x = layer(x, emb)
                elif isinstance(layer, Transformer2DModel):
                    x = layer(x, context)
                else:
                    x = layer(x)
            return x

        # h = x.type(self.dtype)
        h = x
        for module in self.input_blocks:
            h = call_module(module, h, emb, context)
            hs.append(h)

        h = call_module(self.middle_block, h, emb, context)

        for module in self.output_blocks:
            h = torch.cat([h, hs.pop()], dim=1)
            h = call_module(module, h, emb, context)

        h = h.type(x.dtype)
        h = call_module(self.out, h, emb, context)

        return h


if __name__ == "__main__":
    import time

    print("create unet")
    unet = SdxlUNet2DConditionModel()

    unet.to("cuda")
    unet.set_use_memory_efficient_attention(True, False)
    unet.set_gradient_checkpointing(True)
    unet.train()

    # 使用メモリ量確認用の疑似学習ループ
    print("preparing optimizer")

    # optimizer = torch.optim.SGD(unet.parameters(), lr=1e-3, nesterov=True, momentum=0.9) # not working

    # import bitsandbytes
    # optimizer = bitsandbytes.adam.Adam8bit(unet.parameters(), lr=1e-3)        # not working
    # optimizer = bitsandbytes.optim.RMSprop8bit(unet.parameters(), lr=1e-3)  # working at 23.5 GB with torch2
    # optimizer=bitsandbytes.optim.Adagrad8bit(unet.parameters(), lr=1e-3)  # working at 23.5 GB with torch2

    import transformers

    optimizer = transformers.optimization.Adafactor(unet.parameters(), relative_step=True)  # working at 22.2GB with torch2

    scaler = torch.cuda.amp.GradScaler(enabled=True)

    print("start training")
    steps = 10
    batch_size = 1

    for step in range(steps):
        print(f"step {step}")
        if step == 1:
            time_start = time.perf_counter()

        x = torch.randn(batch_size, 4, 128, 128).cuda()  # 1024x1024
        t = torch.randint(low=0, high=10, size=(batch_size,), device="cuda")
        ctx = torch.randn(batch_size, 77, 2048).cuda()
        y = torch.randn(batch_size, ADM_IN_CHANNELS).cuda()

        with torch.cuda.amp.autocast(enabled=True):
            output = unet(x, t, ctx, y)
            target = torch.randn_like(output)
            loss = torch.nn.functional.mse_loss(output, target)

        scaler.scale(loss).backward()
        scaler.step(optimizer)
        scaler.update()
        optimizer.zero_grad(set_to_none=True)

    time_end = time.perf_counter()
    print(f"elapsed time: {time_end - time_start} [sec] for last {steps - 1} steps")