Spaces:
Build error
Build error
# variables related to the pretrained model | |
$pretrained_model_name_or_path = "D:\models\test\samdoesart2\model\last" | |
$v2 = 1 # set to 1 for true or 0 for false | |
$v_model = 0 # set to 1 for true or 0 for false | |
# variables related to the training dataset and output directory | |
$train_dir = "D:\models\test\samdoesart2" | |
$image_folder = "D:\dataset\samdoesart2\raw" | |
$output_dir = "D:\models\test\samdoesart2\model_e2\" | |
$max_resolution = "512,512" | |
# variables related to the training process | |
$learning_rate = 1e-6 | |
$lr_scheduler = "constant" # Default is constant | |
$lr_warmup = 0 # % of steps to warmup for 0 - 100. Default is 0. | |
$dataset_repeats = 40 | |
$train_batch_size = 8 | |
$epoch = 1 | |
$save_every_n_epochs = 1 | |
$mixed_precision = "bf16" | |
$save_precision = "fp16" # use fp16 for better compatibility with auto1111 and other repo | |
$seed = "494481440" | |
$num_cpu_threads_per_process = 6 | |
$train_text_encoder = 0 # set to 1 to train text encoder otherwise set to 0 | |
# variables related to the resulting diffuser model. If input is ckpt or tensors then it is not applicable | |
$convert_to_safetensors = 1 # set to 1 to convert resulting diffuser to ckpt | |
$convert_to_ckpt = 1 # set to 1 to convert resulting diffuser to ckpt | |
# other variables | |
$kohya_finetune_repo_path = "D:\kohya_ss" | |
### You should not need to change things below | |
# Set variables to useful values using ternary operator | |
$v_model = ($v_model -eq 0) ? $null : "--v_parameterization" | |
$v2 = ($v2 -eq 0) ? $null : "--v2" | |
$train_text_encoder = ($train_text_encoder -eq 0) ? $null : "--train_text_encoder" | |
# stop script on error | |
$ErrorActionPreference = "Stop" | |
# define a list of substrings to search for | |
$substrings_v2 = "stable-diffusion-2-1-base", "stable-diffusion-2-base" | |
# check if $v2 and $v_model are empty and if $pretrained_model_name_or_path contains any of the substrings in the v2 list | |
if ($v2 -eq $null -and $v_model -eq $null -and ($substrings_v2 | Where-Object { $pretrained_model_name_or_path -match $_ }).Count -gt 0) { | |
Write-Host("SD v2 model detected. Setting --v2 parameter") | |
$v2 = "--v2" | |
$v_model = $null | |
} | |
# define a list of substrings to search for v-objective | |
$substrings_v_model = "stable-diffusion-2-1", "stable-diffusion-2" | |
# check if $v2 and $v_model are empty and if $pretrained_model_name_or_path contains any of the substrings in the v_model list | |
elseif ($v2 -eq $null -and $v_model -eq $null -and ($substrings_v_model | Where-Object { $pretrained_model_name_or_path -match $_ }).Count -gt 0) { | |
Write-Host("SD v2 v_model detected. Setting --v2 parameter and --v_parameterization") | |
$v2 = "--v2" | |
$v_model = "--v_parameterization" | |
} | |
# activate venv | |
cd $kohya_finetune_repo_path | |
.\venv\Scripts\activate | |
# create caption json file | |
if (!(Test-Path -Path $train_dir)) { | |
New-Item -Path $train_dir -ItemType "directory" | |
} | |
python $kohya_finetune_repo_path\script\merge_captions_to_metadata.py ` | |
--caption_extention ".txt" $image_folder $train_dir"\meta_cap.json" | |
# create images buckets | |
python $kohya_finetune_repo_path\script\prepare_buckets_latents.py ` | |
$image_folder ` | |
$train_dir"\meta_cap.json" ` | |
$train_dir"\meta_lat.json" ` | |
$pretrained_model_name_or_path ` | |
--batch_size 4 --max_resolution $max_resolution --mixed_precision $mixed_precision | |
# Get number of valid images | |
$image_num = Get-ChildItem "$image_folder" -Recurse -File -Include *.npz | Measure-Object | % { $_.Count } | |
$repeats = $image_num * $dataset_repeats | |
Write-Host("Repeats = $repeats") | |
# calculate max_train_set | |
$max_train_set = [Math]::Ceiling($repeats / $train_batch_size * $epoch) | |
Write-Host("max_train_set = $max_train_set") | |
$lr_warmup_steps = [Math]::Round($lr_warmup * $max_train_set / 100) | |
Write-Host("lr_warmup_steps = $lr_warmup_steps") | |
Write-Host("$v2 $v_model") | |
accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process $kohya_finetune_repo_path\script\fine_tune.py ` | |
$v2 ` | |
$v_model ` | |
--pretrained_model_name_or_path=$pretrained_model_name_or_path ` | |
--in_json $train_dir\meta_lat.json ` | |
--train_data_dir="$image_folder" ` | |
--output_dir=$output_dir ` | |
--train_batch_size=$train_batch_size ` | |
--dataset_repeats=$dataset_repeats ` | |
--learning_rate=$learning_rate ` | |
--lr_scheduler=$lr_scheduler ` | |
--lr_warmup_steps=$lr_warmup_steps ` | |
--max_train_steps=$max_train_set ` | |
--use_8bit_adam ` | |
--xformers ` | |
--mixed_precision=$mixed_precision ` | |
--save_every_n_epochs=$save_every_n_epochs ` | |
--seed=$seed ` | |
$train_text_encoder ` | |
--save_precision=$save_precision | |
# check if $output_dir\last is a directory... therefore it is a diffuser model | |
if (Test-Path "$output_dir\last" -PathType Container) { | |
if ($convert_to_ckpt) { | |
Write-Host("Converting diffuser model $output_dir\last to $output_dir\last.ckpt") | |
python "$kohya_finetune_repo_path\tools\convert_diffusers20_original_sd.py" ` | |
$output_dir\last ` | |
$output_dir\last.ckpt ` | |
--$save_precision | |
} | |
if ($convert_to_safetensors) { | |
Write-Host("Converting diffuser model $output_dir\last to $output_dir\last.safetensors") | |
python "$kohya_finetune_repo_path\tools\convert_diffusers20_original_sd.py" ` | |
$output_dir\last ` | |
$output_dir\last.safetensors ` | |
--$save_precision | |
} | |
} | |
# define a list of substrings to search for inference file | |
$substrings_sd_model = ".ckpt", ".safetensors" | |
$matching_extension = foreach ($ext in $substrings_sd_model) { | |
Get-ChildItem $output_dir -File | Where-Object { $_.Extension -contains $ext } | |
} | |
if ($matching_extension.Count -gt 0) { | |
# copy the file named "v2-inference.yaml" from the "v2_inference" folder to $output_dir as last.yaml | |
if ( $v2 -ne $null -and $v_model -ne $null) { | |
Write-Host("Saving v2-inference-v.yaml as $output_dir\last.yaml") | |
Copy-Item -Path "$kohya_finetune_repo_path\v2_inference\v2-inference-v.yaml" -Destination "$output_dir\last.yaml" | |
} | |
elseif ( $v2 -ne $null ) { | |
Write-Host("Saving v2-inference.yaml as $output_dir\last.yaml") | |
Copy-Item -Path "$kohya_finetune_repo_path\v2_inference\v2-inference.yaml" -Destination "$output_dir\last.yaml" | |
} | |
} |