Spaces:
Build error
Build error
import argparse | |
import os | |
import re | |
from pathlib import Path | |
from PIL import Image | |
from tqdm import tqdm | |
import torch | |
from transformers import AutoProcessor, AutoModelForCausalLM | |
from transformers.generation.utils import GenerationMixin | |
import library.train_util as train_util | |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
PATTERN_REPLACE = [ | |
re.compile(r'(has|with|and) the (words?|letters?|name) (" ?[^"]*"|\w+)( ?(is )?(on|in) (the |her |their |him )?\w+)?'), | |
re.compile(r'(with a sign )?that says ?(" ?[^"]*"|\w+)( ?on it)?'), | |
re.compile(r"(with a sign )?that says ?(' ?(i'm)?[^']*'|\w+)( ?on it)?"), | |
re.compile(r"with the number \d+ on (it|\w+ \w+)"), | |
re.compile(r'with the words "'), | |
re.compile(r"word \w+ on it"), | |
re.compile(r"that says the word \w+ on it"), | |
re.compile("that says'the word \"( on it)?"), | |
] | |
# 誤検知しまくりの with the word xxxx を消す | |
def remove_words(captions, debug): | |
removed_caps = [] | |
for caption in captions: | |
cap = caption | |
for pat in PATTERN_REPLACE: | |
cap = pat.sub("", cap) | |
if debug and cap != caption: | |
print(caption) | |
print(cap) | |
removed_caps.append(cap) | |
return removed_caps | |
def collate_fn_remove_corrupted(batch): | |
"""Collate function that allows to remove corrupted examples in the | |
dataloader. It expects that the dataloader returns 'None' when that occurs. | |
The 'None's in the batch are removed. | |
""" | |
# Filter out all the Nones (corrupted examples) | |
batch = list(filter(lambda x: x is not None, batch)) | |
return batch | |
def main(args): | |
# GITにバッチサイズが1より大きくても動くようにパッチを当てる: transformers 4.26.0用 | |
org_prepare_input_ids_for_generation = GenerationMixin._prepare_input_ids_for_generation | |
curr_batch_size = [args.batch_size] # ループの最後で件数がbatch_size未満になるので入れ替えられるように | |
# input_idsがバッチサイズと同じ件数である必要がある:バッチサイズはこの関数から参照できないので外から渡す | |
# ここより上で置き換えようとするとすごく大変 | |
def _prepare_input_ids_for_generation_patch(self, bos_token_id, encoder_outputs): | |
input_ids = org_prepare_input_ids_for_generation(self, bos_token_id, encoder_outputs) | |
if input_ids.size()[0] != curr_batch_size[0]: | |
input_ids = input_ids.repeat(curr_batch_size[0], 1) | |
return input_ids | |
GenerationMixin._prepare_input_ids_for_generation = _prepare_input_ids_for_generation_patch | |
print(f"load images from {args.train_data_dir}") | |
train_data_dir_path = Path(args.train_data_dir) | |
image_paths = train_util.glob_images_pathlib(train_data_dir_path, args.recursive) | |
print(f"found {len(image_paths)} images.") | |
# できればcacheに依存せず明示的にダウンロードしたい | |
print(f"loading GIT: {args.model_id}") | |
git_processor = AutoProcessor.from_pretrained(args.model_id) | |
git_model = AutoModelForCausalLM.from_pretrained(args.model_id).to(DEVICE) | |
print("GIT loaded") | |
# captioningする | |
def run_batch(path_imgs): | |
imgs = [im for _, im in path_imgs] | |
curr_batch_size[0] = len(path_imgs) | |
inputs = git_processor(images=imgs, return_tensors="pt").to(DEVICE) # 画像はpil形式 | |
generated_ids = git_model.generate(pixel_values=inputs.pixel_values, max_length=args.max_length) | |
captions = git_processor.batch_decode(generated_ids, skip_special_tokens=True) | |
if args.remove_words: | |
captions = remove_words(captions, args.debug) | |
for (image_path, _), caption in zip(path_imgs, captions): | |
with open(os.path.splitext(image_path)[0] + args.caption_extension, "wt", encoding="utf-8") as f: | |
f.write(caption + "\n") | |
if args.debug: | |
print(image_path, caption) | |
# 読み込みの高速化のためにDataLoaderを使うオプション | |
if args.max_data_loader_n_workers is not None: | |
dataset = train_util.ImageLoadingDataset(image_paths) | |
data = torch.utils.data.DataLoader( | |
dataset, | |
batch_size=args.batch_size, | |
shuffle=False, | |
num_workers=args.max_data_loader_n_workers, | |
collate_fn=collate_fn_remove_corrupted, | |
drop_last=False, | |
) | |
else: | |
data = [[(None, ip)] for ip in image_paths] | |
b_imgs = [] | |
for data_entry in tqdm(data, smoothing=0.0): | |
for data in data_entry: | |
if data is None: | |
continue | |
image, image_path = data | |
if image is None: | |
try: | |
image = Image.open(image_path) | |
if image.mode != "RGB": | |
image = image.convert("RGB") | |
except Exception as e: | |
print(f"Could not load image path / 画像を読み込めません: {image_path}, error: {e}") | |
continue | |
b_imgs.append((image_path, image)) | |
if len(b_imgs) >= args.batch_size: | |
run_batch(b_imgs) | |
b_imgs.clear() | |
if len(b_imgs) > 0: | |
run_batch(b_imgs) | |
print("done!") | |
def setup_parser() -> argparse.ArgumentParser: | |
parser = argparse.ArgumentParser() | |
parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ") | |
parser.add_argument("--caption_extension", type=str, default=".caption", help="extension of caption file / 出力されるキャプションファイルの拡張子") | |
parser.add_argument( | |
"--model_id", | |
type=str, | |
default="microsoft/git-large-textcaps", | |
help="model id for GIT in Hugging Face / 使用するGITのHugging FaceのモデルID", | |
) | |
parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ") | |
parser.add_argument( | |
"--max_data_loader_n_workers", | |
type=int, | |
default=None, | |
help="enable image reading by DataLoader with this number of workers (faster) / DataLoaderによる画像読み込みを有効にしてこのワーカー数を適用する(読み込みを高速化)", | |
) | |
parser.add_argument("--max_length", type=int, default=50, help="max length of caption / captionの最大長") | |
parser.add_argument( | |
"--remove_words", | |
action="store_true", | |
help="remove like `with the words xxx` from caption / `with the words xxx`のような部分をキャプションから削除する", | |
) | |
parser.add_argument("--debug", action="store_true", help="debug mode") | |
parser.add_argument("--recursive", action="store_true", help="search for images in subfolders recursively / サブフォルダを再帰的に検索する") | |
return parser | |
if __name__ == "__main__": | |
parser = setup_parser() | |
args = parser.parse_args() | |
main(args) | |