Spaces:
Build error
Build error
""" | |
extract factors the build is dependent on: | |
[X] compute capability | |
[ ] TODO: Q - What if we have multiple GPUs of different makes? | |
- CUDA version | |
- Software: | |
- CPU-only: only CPU quantization functions (no optimizer, no matrix multiple) | |
- CuBLAS-LT: full-build 8-bit optimizer | |
- no CuBLAS-LT: no 8-bit matrix multiplication (`nomatmul`) | |
evaluation: | |
- if paths faulty, return meaningful error | |
- else: | |
- determine CUDA version | |
- determine capabilities | |
- based on that set the default path | |
""" | |
import ctypes | |
from .paths import determine_cuda_runtime_lib_path | |
def check_cuda_result(cuda, result_val): | |
# 3. Check for CUDA errors | |
if result_val != 0: | |
error_str = ctypes.c_char_p() | |
cuda.cuGetErrorString(result_val, ctypes.byref(error_str)) | |
print(f"CUDA exception! Error code: {error_str.value.decode()}") | |
def get_cuda_version(cuda, cudart_path): | |
# https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART____VERSION.html#group__CUDART____VERSION | |
try: | |
cudart = ctypes.CDLL(cudart_path) | |
except OSError: | |
# TODO: shouldn't we error or at least warn here? | |
print(f'ERROR: libcudart.so could not be read from path: {cudart_path}!') | |
return None | |
version = ctypes.c_int() | |
check_cuda_result(cuda, cudart.cudaRuntimeGetVersion(ctypes.byref(version))) | |
version = int(version.value) | |
major = version//1000 | |
minor = (version-(major*1000))//10 | |
if major < 11: | |
print('CUDA SETUP: CUDA version lower than 11 are currently not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!') | |
return f'{major}{minor}' | |
def get_cuda_lib_handle(): | |
# 1. find libcuda.so library (GPU driver) (/usr/lib) | |
try: | |
cuda = ctypes.CDLL("libcuda.so") | |
except OSError: | |
# TODO: shouldn't we error or at least warn here? | |
print('CUDA SETUP: WARNING! libcuda.so not found! Do you have a CUDA driver installed? If you are on a cluster, make sure you are on a CUDA machine!') | |
return None | |
check_cuda_result(cuda, cuda.cuInit(0)) | |
return cuda | |
def get_compute_capabilities(cuda): | |
""" | |
1. find libcuda.so library (GPU driver) (/usr/lib) | |
init_device -> init variables -> call function by reference | |
2. call extern C function to determine CC | |
(https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE__DEPRECATED.html) | |
3. Check for CUDA errors | |
https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api | |
# bits taken from https://gist.github.com/f0k/63a664160d016a491b2cbea15913d549 | |
""" | |
nGpus = ctypes.c_int() | |
cc_major = ctypes.c_int() | |
cc_minor = ctypes.c_int() | |
device = ctypes.c_int() | |
check_cuda_result(cuda, cuda.cuDeviceGetCount(ctypes.byref(nGpus))) | |
ccs = [] | |
for i in range(nGpus.value): | |
check_cuda_result(cuda, cuda.cuDeviceGet(ctypes.byref(device), i)) | |
ref_major = ctypes.byref(cc_major) | |
ref_minor = ctypes.byref(cc_minor) | |
# 2. call extern C function to determine CC | |
check_cuda_result( | |
cuda, cuda.cuDeviceComputeCapability(ref_major, ref_minor, device) | |
) | |
ccs.append(f"{cc_major.value}.{cc_minor.value}") | |
return ccs | |
# def get_compute_capability()-> Union[List[str, ...], None]: # FIXME: error | |
def get_compute_capability(cuda): | |
""" | |
Extracts the highest compute capbility from all available GPUs, as compute | |
capabilities are downwards compatible. If no GPUs are detected, it returns | |
None. | |
""" | |
ccs = get_compute_capabilities(cuda) | |
if ccs is not None: | |
# TODO: handle different compute capabilities; for now, take the max | |
return ccs[-1] | |
return None | |
def evaluate_cuda_setup(): | |
print('') | |
print('='*35 + 'BUG REPORT' + '='*35) | |
print('Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues') | |
print('For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link') | |
print('='*80) | |
return "libbitsandbytes_cuda116.dll" # $$$ | |
binary_name = "libbitsandbytes_cpu.so" | |
#if not torch.cuda.is_available(): | |
#print('No GPU detected. Loading CPU library...') | |
#return binary_name | |
cudart_path = determine_cuda_runtime_lib_path() | |
if cudart_path is None: | |
print( | |
"WARNING: No libcudart.so found! Install CUDA or the cudatoolkit package (anaconda)!" | |
) | |
return binary_name | |
print(f"CUDA SETUP: CUDA runtime path found: {cudart_path}") | |
cuda = get_cuda_lib_handle() | |
cc = get_compute_capability(cuda) | |
print(f"CUDA SETUP: Highest compute capability among GPUs detected: {cc}") | |
cuda_version_string = get_cuda_version(cuda, cudart_path) | |
if cc == '': | |
print( | |
"WARNING: No GPU detected! Check your CUDA paths. Processing to load CPU-only library..." | |
) | |
return binary_name | |
# 7.5 is the minimum CC vor cublaslt | |
has_cublaslt = cc in ["7.5", "8.0", "8.6"] | |
# TODO: | |
# (1) CUDA missing cases (no CUDA installed by CUDA driver (nvidia-smi accessible) | |
# (2) Multiple CUDA versions installed | |
# we use ls -l instead of nvcc to determine the cuda version | |
# since most installations will have the libcudart.so installed, but not the compiler | |
print(f'CUDA SETUP: Detected CUDA version {cuda_version_string}') | |
def get_binary_name(): | |
"if not has_cublaslt (CC < 7.5), then we have to choose _nocublaslt.so" | |
bin_base_name = "libbitsandbytes_cuda" | |
if has_cublaslt: | |
return f"{bin_base_name}{cuda_version_string}.so" | |
else: | |
return f"{bin_base_name}{cuda_version_string}_nocublaslt.so" | |
binary_name = get_binary_name() | |
return binary_name |