Spaces:
Build error
Build error
# v1: initial release | |
# v2: add open and save folder icons | |
# v3: Add new Utilities tab for Dreambooth folder preparation | |
# v3.1: Adding captionning of images to utilities | |
import gradio as gr | |
import json | |
import math | |
import os | |
import subprocess | |
import pathlib | |
import argparse | |
from datetime import datetime | |
from library.common_gui import ( | |
get_file_path, | |
get_saveasfile_path, | |
color_aug_changed, | |
save_inference_file, | |
run_cmd_advanced_training, | |
run_cmd_training, | |
update_my_data, | |
check_if_model_exist, | |
output_message, | |
verify_image_folder_pattern, | |
SaveConfigFile, | |
save_to_file | |
) | |
from library.class_configuration_file import ConfigurationFile | |
from library.class_source_model import SourceModel | |
from library.class_basic_training import BasicTraining | |
from library.class_advanced_training import AdvancedTraining | |
from library.class_folders import Folders | |
from library.tensorboard_gui import ( | |
gradio_tensorboard, | |
start_tensorboard, | |
stop_tensorboard, | |
) | |
from library.dreambooth_folder_creation_gui import ( | |
gradio_dreambooth_folder_creation_tab, | |
) | |
from library.utilities import utilities_tab | |
from library.class_sample_images import SampleImages, run_cmd_sample | |
from library.custom_logging import setup_logging | |
# Set up logging | |
log = setup_logging() | |
def save_configuration( | |
save_as, | |
file_path, | |
pretrained_model_name_or_path, | |
v2, | |
v_parameterization, | |
sdxl, | |
logging_dir, | |
train_data_dir, | |
reg_data_dir, | |
output_dir, | |
max_resolution, | |
learning_rate, | |
lr_scheduler, | |
lr_warmup, | |
train_batch_size, | |
epoch, | |
save_every_n_epochs, | |
mixed_precision, | |
save_precision, | |
seed, | |
num_cpu_threads_per_process, | |
cache_latents, | |
cache_latents_to_disk, | |
caption_extension, | |
enable_bucket, | |
gradient_checkpointing, | |
full_fp16, | |
no_token_padding, | |
stop_text_encoder_training, | |
# use_8bit_adam, | |
xformers, | |
save_model_as, | |
shuffle_caption, | |
save_state, | |
resume, | |
prior_loss_weight, | |
color_aug, | |
flip_aug, | |
clip_skip, | |
vae, | |
output_name, | |
max_token_length, | |
max_train_epochs, | |
max_data_loader_n_workers, | |
mem_eff_attn, | |
gradient_accumulation_steps, | |
model_list, | |
keep_tokens, | |
persistent_data_loader_workers, | |
bucket_no_upscale, | |
random_crop, | |
bucket_reso_steps, | |
caption_dropout_every_n_epochs, | |
caption_dropout_rate, | |
optimizer, | |
optimizer_args, | |
noise_offset_type, | |
noise_offset, | |
adaptive_noise_scale, | |
multires_noise_iterations, | |
multires_noise_discount, | |
sample_every_n_steps, | |
sample_every_n_epochs, | |
sample_sampler, | |
sample_prompts, | |
additional_parameters, | |
vae_batch_size, | |
min_snr_gamma, | |
weighted_captions, | |
save_every_n_steps, | |
save_last_n_steps, | |
save_last_n_steps_state, | |
use_wandb, | |
wandb_api_key, | |
scale_v_pred_loss_like_noise_pred, | |
min_timestep, | |
max_timestep, | |
): | |
# Get list of function parameters and values | |
parameters = list(locals().items()) | |
original_file_path = file_path | |
save_as_bool = True if save_as.get('label') == 'True' else False | |
if save_as_bool: | |
log.info('Save as...') | |
file_path = get_saveasfile_path(file_path) | |
else: | |
log.info('Save...') | |
if file_path == None or file_path == '': | |
file_path = get_saveasfile_path(file_path) | |
if file_path == None or file_path == '': | |
return original_file_path # In case a file_path was provided and the user decide to cancel the open action | |
# Extract the destination directory from the file path | |
destination_directory = os.path.dirname(file_path) | |
# Create the destination directory if it doesn't exist | |
if not os.path.exists(destination_directory): | |
os.makedirs(destination_directory) | |
SaveConfigFile(parameters=parameters, file_path=file_path, exclusion=['file_path', 'save_as']) | |
return file_path | |
def open_configuration( | |
ask_for_file, | |
file_path, | |
pretrained_model_name_or_path, | |
v2, | |
v_parameterization, | |
sdxl, | |
logging_dir, | |
train_data_dir, | |
reg_data_dir, | |
output_dir, | |
max_resolution, | |
learning_rate, | |
lr_scheduler, | |
lr_warmup, | |
train_batch_size, | |
epoch, | |
save_every_n_epochs, | |
mixed_precision, | |
save_precision, | |
seed, | |
num_cpu_threads_per_process, | |
cache_latents, | |
cache_latents_to_disk, | |
caption_extension, | |
enable_bucket, | |
gradient_checkpointing, | |
full_fp16, | |
no_token_padding, | |
stop_text_encoder_training, | |
# use_8bit_adam, | |
xformers, | |
save_model_as, | |
shuffle_caption, | |
save_state, | |
resume, | |
prior_loss_weight, | |
color_aug, | |
flip_aug, | |
clip_skip, | |
vae, | |
output_name, | |
max_token_length, | |
max_train_epochs, | |
max_data_loader_n_workers, | |
mem_eff_attn, | |
gradient_accumulation_steps, | |
model_list, | |
keep_tokens, | |
persistent_data_loader_workers, | |
bucket_no_upscale, | |
random_crop, | |
bucket_reso_steps, | |
caption_dropout_every_n_epochs, | |
caption_dropout_rate, | |
optimizer, | |
optimizer_args, | |
noise_offset_type, | |
noise_offset, | |
adaptive_noise_scale, | |
multires_noise_iterations, | |
multires_noise_discount, | |
sample_every_n_steps, | |
sample_every_n_epochs, | |
sample_sampler, | |
sample_prompts, | |
additional_parameters, | |
vae_batch_size, | |
min_snr_gamma, | |
weighted_captions, | |
save_every_n_steps, | |
save_last_n_steps, | |
save_last_n_steps_state, | |
use_wandb, | |
wandb_api_key, | |
scale_v_pred_loss_like_noise_pred, | |
min_timestep, | |
max_timestep, | |
): | |
# Get list of function parameters and values | |
parameters = list(locals().items()) | |
ask_for_file = True if ask_for_file.get('label') == 'True' else False | |
original_file_path = file_path | |
if ask_for_file: | |
file_path = get_file_path(file_path) | |
if not file_path == '' and not file_path == None: | |
# load variables from JSON file | |
with open(file_path, 'r') as f: | |
my_data = json.load(f) | |
log.info('Loading config...') | |
# Update values to fix deprecated use_8bit_adam checkbox and set appropriate optimizer if it is set to True | |
my_data = update_my_data(my_data) | |
else: | |
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action | |
my_data = {} | |
values = [file_path] | |
for key, value in parameters: | |
# Set the value in the dictionary to the corresponding value in `my_data`, or the default value if not found | |
if not key in ['ask_for_file', 'file_path']: | |
values.append(my_data.get(key, value)) | |
return tuple(values) | |
def train_model( | |
headless, | |
print_only, | |
pretrained_model_name_or_path, | |
v2, | |
v_parameterization, | |
sdxl, | |
logging_dir, | |
train_data_dir, | |
reg_data_dir, | |
output_dir, | |
max_resolution, | |
learning_rate, | |
lr_scheduler, | |
lr_warmup, | |
train_batch_size, | |
epoch, | |
save_every_n_epochs, | |
mixed_precision, | |
save_precision, | |
seed, | |
num_cpu_threads_per_process, | |
cache_latents, | |
cache_latents_to_disk, | |
caption_extension, | |
enable_bucket, | |
gradient_checkpointing, | |
full_fp16, | |
no_token_padding, | |
stop_text_encoder_training_pct, | |
# use_8bit_adam, | |
xformers, | |
save_model_as, | |
shuffle_caption, | |
save_state, | |
resume, | |
prior_loss_weight, | |
color_aug, | |
flip_aug, | |
clip_skip, | |
vae, | |
output_name, | |
max_token_length, | |
max_train_epochs, | |
max_data_loader_n_workers, | |
mem_eff_attn, | |
gradient_accumulation_steps, | |
model_list, # Keep this. Yes, it is unused here but required given the common list used | |
keep_tokens, | |
persistent_data_loader_workers, | |
bucket_no_upscale, | |
random_crop, | |
bucket_reso_steps, | |
caption_dropout_every_n_epochs, | |
caption_dropout_rate, | |
optimizer, | |
optimizer_args, | |
noise_offset_type, | |
noise_offset, | |
adaptive_noise_scale, | |
multires_noise_iterations, | |
multires_noise_discount, | |
sample_every_n_steps, | |
sample_every_n_epochs, | |
sample_sampler, | |
sample_prompts, | |
additional_parameters, | |
vae_batch_size, | |
min_snr_gamma, | |
weighted_captions, | |
save_every_n_steps, | |
save_last_n_steps, | |
save_last_n_steps_state, | |
use_wandb, | |
wandb_api_key, | |
scale_v_pred_loss_like_noise_pred, | |
min_timestep, | |
max_timestep, | |
): | |
# Get list of function parameters and values | |
parameters = list(locals().items()) | |
print_only_bool = True if print_only.get('label') == 'True' else False | |
log.info(f'Start training Dreambooth...') | |
headless_bool = True if headless.get('label') == 'True' else False | |
if pretrained_model_name_or_path == '': | |
output_message( | |
msg='Source model information is missing', headless=headless_bool | |
) | |
return | |
if train_data_dir == '': | |
output_message( | |
msg='Image folder path is missing', headless=headless_bool | |
) | |
return | |
if not os.path.exists(train_data_dir): | |
output_message( | |
msg='Image folder does not exist', headless=headless_bool | |
) | |
return | |
if not verify_image_folder_pattern(train_data_dir): | |
return | |
if reg_data_dir != '': | |
if not os.path.exists(reg_data_dir): | |
output_message( | |
msg='Regularisation folder does not exist', | |
headless=headless_bool, | |
) | |
return | |
if not verify_image_folder_pattern(reg_data_dir): | |
return | |
if output_dir == '': | |
output_message( | |
msg='Output folder path is missing', headless=headless_bool | |
) | |
return | |
if check_if_model_exist( | |
output_name, output_dir, save_model_as, headless=headless_bool | |
): | |
return | |
if sdxl: | |
output_message( | |
msg='TI training is not compatible with an SDXL model.', | |
headless=headless_bool, | |
) | |
return | |
# if optimizer == 'Adafactor' and lr_warmup != '0': | |
# output_message( | |
# msg="Warning: lr_scheduler is set to 'Adafactor', so 'LR warmup (% of steps)' will be considered 0.", | |
# title='Warning', | |
# headless=headless_bool, | |
# ) | |
# lr_warmup = '0' | |
# Get a list of all subfolders in train_data_dir, excluding hidden folders | |
subfolders = [ | |
f | |
for f in os.listdir(train_data_dir) | |
if os.path.isdir(os.path.join(train_data_dir, f)) | |
and not f.startswith('.') | |
] | |
# Check if subfolders are present. If not let the user know and return | |
if not subfolders: | |
log.info( | |
f"No {subfolders} were found in train_data_dir can't train..." | |
) | |
return | |
total_steps = 0 | |
# Loop through each subfolder and extract the number of repeats | |
for folder in subfolders: | |
# Extract the number of repeats from the folder name | |
try: | |
repeats = int(folder.split('_')[0]) | |
except ValueError: | |
log.info( | |
f"Subfolder {folder} does not have a proper repeat value, please correct the name or remove it... can't train..." | |
) | |
continue | |
# Count the number of images in the folder | |
num_images = len( | |
[ | |
f | |
for f, lower_f in ( | |
(file, file.lower()) | |
for file in os.listdir( | |
os.path.join(train_data_dir, folder) | |
) | |
) | |
if lower_f.endswith(('.jpg', '.jpeg', '.png', '.webp')) | |
] | |
) | |
if num_images == 0: | |
log.info(f'{folder} folder contain no images, skipping...') | |
else: | |
# Calculate the total number of steps for this folder | |
steps = repeats * num_images | |
total_steps += steps | |
# Print the result | |
log.info(f'Folder {folder} : steps {steps}') | |
if total_steps == 0: | |
log.info( | |
f'No images were found in folder {train_data_dir}... please rectify!' | |
) | |
return | |
# Print the result | |
# log.info(f"{total_steps} total steps") | |
if reg_data_dir == '': | |
reg_factor = 1 | |
else: | |
log.info( | |
f'Regularisation images are used... Will double the number of steps required...' | |
) | |
reg_factor = 2 | |
# calculate max_train_steps | |
max_train_steps = int( | |
math.ceil( | |
float(total_steps) | |
/ int(train_batch_size) | |
/ int(gradient_accumulation_steps) | |
* int(epoch) | |
* int(reg_factor) | |
) | |
) | |
log.info(f'max_train_steps = {max_train_steps}') | |
# calculate stop encoder training | |
if int(stop_text_encoder_training_pct) == -1: | |
stop_text_encoder_training = -1 | |
elif stop_text_encoder_training_pct == None: | |
stop_text_encoder_training = 0 | |
else: | |
stop_text_encoder_training = math.ceil( | |
float(max_train_steps) / 100 * int(stop_text_encoder_training_pct) | |
) | |
log.info(f'stop_text_encoder_training = {stop_text_encoder_training}') | |
lr_warmup_steps = round(float(int(lr_warmup) * int(max_train_steps) / 100)) | |
log.info(f'lr_warmup_steps = {lr_warmup_steps}') | |
run_cmd = f'accelerate launch --num_cpu_threads_per_process={num_cpu_threads_per_process} "train_db.py"' | |
if v2: | |
run_cmd += ' --v2' | |
if v_parameterization: | |
run_cmd += ' --v_parameterization' | |
if enable_bucket: | |
run_cmd += ' --enable_bucket' | |
if no_token_padding: | |
run_cmd += ' --no_token_padding' | |
if weighted_captions: | |
run_cmd += ' --weighted_captions' | |
run_cmd += ( | |
f' --pretrained_model_name_or_path="{pretrained_model_name_or_path}"' | |
) | |
run_cmd += f' --train_data_dir="{train_data_dir}"' | |
if len(reg_data_dir): | |
run_cmd += f' --reg_data_dir="{reg_data_dir}"' | |
run_cmd += f' --resolution="{max_resolution}"' | |
run_cmd += f' --output_dir="{output_dir}"' | |
if not logging_dir == '': | |
run_cmd += f' --logging_dir="{logging_dir}"' | |
if not stop_text_encoder_training == 0: | |
run_cmd += ( | |
f' --stop_text_encoder_training={stop_text_encoder_training}' | |
) | |
if not save_model_as == 'same as source model': | |
run_cmd += f' --save_model_as={save_model_as}' | |
# if not resume == '': | |
# run_cmd += f' --resume={resume}' | |
if not float(prior_loss_weight) == 1.0: | |
run_cmd += f' --prior_loss_weight={prior_loss_weight}' | |
if not vae == '': | |
run_cmd += f' --vae="{vae}"' | |
if not output_name == '': | |
run_cmd += f' --output_name="{output_name}"' | |
if int(max_token_length) > 75: | |
run_cmd += f' --max_token_length={max_token_length}' | |
if not max_train_epochs == '': | |
run_cmd += f' --max_train_epochs="{max_train_epochs}"' | |
if not max_data_loader_n_workers == '': | |
run_cmd += ( | |
f' --max_data_loader_n_workers="{max_data_loader_n_workers}"' | |
) | |
if int(gradient_accumulation_steps) > 1: | |
run_cmd += f' --gradient_accumulation_steps={int(gradient_accumulation_steps)}' | |
run_cmd += run_cmd_training( | |
learning_rate=learning_rate, | |
lr_scheduler=lr_scheduler, | |
lr_warmup_steps=lr_warmup_steps, | |
train_batch_size=train_batch_size, | |
max_train_steps=max_train_steps, | |
save_every_n_epochs=save_every_n_epochs, | |
mixed_precision=mixed_precision, | |
save_precision=save_precision, | |
seed=seed, | |
caption_extension=caption_extension, | |
cache_latents=cache_latents, | |
cache_latents_to_disk=cache_latents_to_disk, | |
optimizer=optimizer, | |
optimizer_args=optimizer_args, | |
) | |
run_cmd += run_cmd_advanced_training( | |
max_train_epochs=max_train_epochs, | |
max_data_loader_n_workers=max_data_loader_n_workers, | |
max_token_length=max_token_length, | |
resume=resume, | |
save_state=save_state, | |
mem_eff_attn=mem_eff_attn, | |
clip_skip=clip_skip, | |
flip_aug=flip_aug, | |
color_aug=color_aug, | |
shuffle_caption=shuffle_caption, | |
gradient_checkpointing=gradient_checkpointing, | |
full_fp16=full_fp16, | |
xformers=xformers, | |
keep_tokens=keep_tokens, | |
persistent_data_loader_workers=persistent_data_loader_workers, | |
bucket_no_upscale=bucket_no_upscale, | |
random_crop=random_crop, | |
bucket_reso_steps=bucket_reso_steps, | |
caption_dropout_every_n_epochs=caption_dropout_every_n_epochs, | |
caption_dropout_rate=caption_dropout_rate, | |
noise_offset_type=noise_offset_type, | |
noise_offset=noise_offset, | |
adaptive_noise_scale=adaptive_noise_scale, | |
multires_noise_iterations=multires_noise_iterations, | |
multires_noise_discount=multires_noise_discount, | |
additional_parameters=additional_parameters, | |
vae_batch_size=vae_batch_size, | |
min_snr_gamma=min_snr_gamma, | |
save_every_n_steps=save_every_n_steps, | |
save_last_n_steps=save_last_n_steps, | |
save_last_n_steps_state=save_last_n_steps_state, | |
use_wandb=use_wandb, | |
wandb_api_key=wandb_api_key, | |
scale_v_pred_loss_like_noise_pred=scale_v_pred_loss_like_noise_pred, | |
min_timestep=min_timestep, | |
max_timestep=max_timestep, | |
) | |
run_cmd += run_cmd_sample( | |
sample_every_n_steps, | |
sample_every_n_epochs, | |
sample_sampler, | |
sample_prompts, | |
output_dir, | |
) | |
if print_only_bool: | |
log.warning( | |
'Here is the trainer command as a reference. It will not be executed:\n' | |
) | |
print(run_cmd) | |
save_to_file(run_cmd) | |
else: | |
# Saving config file for model | |
current_datetime = datetime.now() | |
formatted_datetime = current_datetime.strftime("%Y%m%d-%H%M%S") | |
file_path = os.path.join(output_dir, f'{output_name}_{formatted_datetime}.json') | |
log.info(f'Saving training config to {file_path}...') | |
SaveConfigFile(parameters=parameters, file_path=file_path, exclusion=['file_path', 'save_as', 'headless', 'print_only']) | |
log.info(run_cmd) | |
# Run the command | |
if os.name == 'posix': | |
os.system(run_cmd) | |
else: | |
subprocess.run(run_cmd) | |
# check if output_dir/last is a folder... therefore it is a diffuser model | |
last_dir = pathlib.Path(f'{output_dir}/{output_name}') | |
if not last_dir.is_dir(): | |
# Copy inference model for v2 if required | |
save_inference_file( | |
output_dir, v2, v_parameterization, output_name | |
) | |
def dreambooth_tab( | |
# train_data_dir=gr.Textbox(), | |
# reg_data_dir=gr.Textbox(), | |
# output_dir=gr.Textbox(), | |
# logging_dir=gr.Textbox(), | |
headless=False, | |
): | |
dummy_db_true = gr.Label(value=True, visible=False) | |
dummy_db_false = gr.Label(value=False, visible=False) | |
dummy_headless = gr.Label(value=headless, visible=False) | |
with gr.Tab('Training'): | |
gr.Markdown('Train a custom model using kohya dreambooth python code...') | |
# Setup Configuration Files Gradio | |
config = ConfigurationFile(headless) | |
source_model = SourceModel(headless=headless) | |
with gr.Tab('Folders'): | |
folders = Folders(headless=headless) | |
with gr.Tab('Parameters'): | |
basic_training = BasicTraining( | |
learning_rate_value='1e-5', | |
lr_scheduler_value='cosine', | |
lr_warmup_value='10', | |
) | |
with gr.Accordion('Advanced Configuration', open=False): | |
advanced_training = AdvancedTraining(headless=headless) | |
advanced_training.color_aug.change( | |
color_aug_changed, | |
inputs=[advanced_training.color_aug], | |
outputs=[basic_training.cache_latents], | |
) | |
sample = SampleImages() | |
with gr.Tab('Tools'): | |
gr.Markdown( | |
'This section provide Dreambooth tools to help setup your dataset...' | |
) | |
gradio_dreambooth_folder_creation_tab( | |
train_data_dir_input=folders.train_data_dir, | |
reg_data_dir_input=folders.reg_data_dir, | |
output_dir_input=folders.output_dir, | |
logging_dir_input=folders.logging_dir, | |
headless=headless, | |
) | |
button_run = gr.Button('Train model', variant='primary') | |
button_print = gr.Button('Print training command') | |
# Setup gradio tensorboard buttons | |
button_start_tensorboard, button_stop_tensorboard = gradio_tensorboard() | |
button_start_tensorboard.click( | |
start_tensorboard, | |
inputs=folders.logging_dir, | |
show_progress=False, | |
) | |
button_stop_tensorboard.click( | |
stop_tensorboard, | |
show_progress=False, | |
) | |
settings_list = [ | |
source_model.pretrained_model_name_or_path, | |
source_model.v2, | |
source_model.v_parameterization, | |
source_model.sdxl_checkbox, | |
folders.logging_dir, | |
folders.train_data_dir, | |
folders.reg_data_dir, | |
folders.output_dir, | |
basic_training.max_resolution, | |
basic_training.learning_rate, | |
basic_training.lr_scheduler, | |
basic_training.lr_warmup, | |
basic_training.train_batch_size, | |
basic_training.epoch, | |
basic_training.save_every_n_epochs, | |
basic_training.mixed_precision, | |
basic_training.save_precision, | |
basic_training.seed, | |
basic_training.num_cpu_threads_per_process, | |
basic_training.cache_latents, | |
basic_training.cache_latents_to_disk, | |
basic_training.caption_extension, | |
basic_training.enable_bucket, | |
advanced_training.gradient_checkpointing, | |
advanced_training.full_fp16, | |
advanced_training.no_token_padding, | |
basic_training.stop_text_encoder_training, | |
advanced_training.xformers, | |
source_model.save_model_as, | |
advanced_training.shuffle_caption, | |
advanced_training.save_state, | |
advanced_training.resume, | |
advanced_training.prior_loss_weight, | |
advanced_training.color_aug, | |
advanced_training.flip_aug, | |
advanced_training.clip_skip, | |
advanced_training.vae, | |
folders.output_name, | |
advanced_training.max_token_length, | |
advanced_training.max_train_epochs, | |
advanced_training.max_data_loader_n_workers, | |
advanced_training.mem_eff_attn, | |
advanced_training.gradient_accumulation_steps, | |
source_model.model_list, | |
advanced_training.keep_tokens, | |
advanced_training.persistent_data_loader_workers, | |
advanced_training.bucket_no_upscale, | |
advanced_training.random_crop, | |
advanced_training.bucket_reso_steps, | |
advanced_training.caption_dropout_every_n_epochs, | |
advanced_training.caption_dropout_rate, | |
basic_training.optimizer, | |
basic_training.optimizer_args, | |
advanced_training.noise_offset_type, | |
advanced_training.noise_offset, | |
advanced_training.adaptive_noise_scale, | |
advanced_training.multires_noise_iterations, | |
advanced_training.multires_noise_discount, | |
sample.sample_every_n_steps, | |
sample.sample_every_n_epochs, | |
sample.sample_sampler, | |
sample.sample_prompts, | |
advanced_training.additional_parameters, | |
advanced_training.vae_batch_size, | |
advanced_training.min_snr_gamma, | |
advanced_training.weighted_captions, | |
advanced_training.save_every_n_steps, | |
advanced_training.save_last_n_steps, | |
advanced_training.save_last_n_steps_state, | |
advanced_training.use_wandb, | |
advanced_training.wandb_api_key, | |
advanced_training.scale_v_pred_loss_like_noise_pred, | |
advanced_training.min_timestep, | |
advanced_training.max_timestep, | |
] | |
config.button_open_config.click( | |
open_configuration, | |
inputs=[dummy_db_true, config.config_file_name] + settings_list, | |
outputs=[config.config_file_name] + settings_list, | |
show_progress=False, | |
) | |
config.button_load_config.click( | |
open_configuration, | |
inputs=[dummy_db_false, config.config_file_name] + settings_list, | |
outputs=[config.config_file_name] + settings_list, | |
show_progress=False, | |
) | |
config.button_save_config.click( | |
save_configuration, | |
inputs=[dummy_db_false, config.config_file_name] + settings_list, | |
outputs=[config.config_file_name], | |
show_progress=False, | |
) | |
config.button_save_as_config.click( | |
save_configuration, | |
inputs=[dummy_db_true, config.config_file_name] + settings_list, | |
outputs=[config.config_file_name], | |
show_progress=False, | |
) | |
button_run.click( | |
train_model, | |
inputs=[dummy_headless] + [dummy_db_false] + settings_list, | |
show_progress=False, | |
) | |
button_print.click( | |
train_model, | |
inputs=[dummy_headless] + [dummy_db_true] + settings_list, | |
show_progress=False, | |
) | |
return ( | |
folders.train_data_dir, | |
folders.reg_data_dir, | |
folders.output_dir, | |
folders.logging_dir, | |
) | |
def UI(**kwargs): | |
css = '' | |
headless = kwargs.get('headless', False) | |
log.info(f'headless: {headless}') | |
if os.path.exists('./style.css'): | |
with open(os.path.join('./style.css'), 'r', encoding='utf8') as file: | |
log.info('Load CSS...') | |
css += file.read() + '\n' | |
interface = gr.Blocks( | |
css=css, title='Kohya_ss GUI', theme=gr.themes.Default() | |
) | |
with interface: | |
with gr.Tab('Dreambooth'): | |
( | |
train_data_dir_input, | |
reg_data_dir_input, | |
output_dir_input, | |
logging_dir_input, | |
) = dreambooth_tab(headless=headless) | |
with gr.Tab('Utilities'): | |
utilities_tab( | |
train_data_dir_input=train_data_dir_input, | |
reg_data_dir_input=reg_data_dir_input, | |
output_dir_input=output_dir_input, | |
logging_dir_input=logging_dir_input, | |
enable_copy_info_button=True, | |
headless=headless, | |
) | |
# Show the interface | |
launch_kwargs = {} | |
username = kwargs.get('username') | |
password = kwargs.get('password') | |
server_port = kwargs.get('server_port', 0) | |
inbrowser = kwargs.get('inbrowser', False) | |
share = kwargs.get('share', False) | |
server_name = kwargs.get('listen') | |
launch_kwargs['server_name'] = server_name | |
if username and password: | |
launch_kwargs['auth'] = (username, password) | |
if server_port > 0: | |
launch_kwargs['server_port'] = server_port | |
if inbrowser: | |
launch_kwargs['inbrowser'] = inbrowser | |
if share: | |
launch_kwargs['share'] = share | |
interface.launch(**launch_kwargs) | |
if __name__ == '__main__': | |
# torch.cuda.set_per_process_memory_fraction(0.48) | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
'--listen', | |
type=str, | |
default='127.0.0.1', | |
help='IP to listen on for connections to Gradio', | |
) | |
parser.add_argument( | |
'--username', type=str, default='', help='Username for authentication' | |
) | |
parser.add_argument( | |
'--password', type=str, default='', help='Password for authentication' | |
) | |
parser.add_argument( | |
'--server_port', | |
type=int, | |
default=0, | |
help='Port to run the server listener on', | |
) | |
parser.add_argument( | |
'--inbrowser', action='store_true', help='Open in browser' | |
) | |
parser.add_argument( | |
'--share', action='store_true', help='Share the gradio UI' | |
) | |
parser.add_argument( | |
'--headless', action='store_true', help='Is the server headless' | |
) | |
args = parser.parse_args() | |
UI( | |
username=args.username, | |
password=args.password, | |
inbrowser=args.inbrowser, | |
server_port=args.server_port, | |
share=args.share, | |
listen=args.listen, | |
headless=args.headless, | |
) | |