Spaces:
Build error
Build error
import gradio as gr | |
from easygui import msgbox | |
import subprocess | |
import os | |
from .common_gui import ( | |
get_saveasfilename_path, | |
get_any_file_path, | |
get_file_path, | |
) | |
from library.custom_logging import setup_logging | |
# Set up logging | |
log = setup_logging() | |
folder_symbol = '\U0001f4c2' # π | |
refresh_symbol = '\U0001f504' # π | |
save_style_symbol = '\U0001f4be' # πΎ | |
document_symbol = '\U0001F4C4' # π | |
PYTHON = 'python3' if os.name == 'posix' else './venv/Scripts/python.exe' | |
def extract_lycoris_locon( | |
db_model, | |
base_model, | |
output_name, | |
device, | |
is_v2, | |
mode, | |
linear_dim, | |
conv_dim, | |
linear_threshold, | |
conv_threshold, | |
linear_ratio, | |
conv_ratio, | |
linear_quantile, | |
conv_quantile, | |
use_sparse_bias, | |
sparsity, | |
disable_cp, | |
): | |
# Check for caption_text_input | |
if db_model == '': | |
msgbox('Invalid finetuned model file') | |
return | |
if base_model == '': | |
msgbox('Invalid base model file') | |
return | |
# Check if source model exist | |
if not os.path.isfile(db_model): | |
msgbox('The provided finetuned model is not a file') | |
return | |
if not os.path.isfile(base_model): | |
msgbox('The provided base model is not a file') | |
return | |
run_cmd = f'{PYTHON} "{os.path.join("tools","lycoris_locon_extract.py")}"' | |
if is_v2: | |
run_cmd += f' --is_v2' | |
run_cmd += f' --device {device}' | |
run_cmd += f' --mode {mode}' | |
run_cmd += f' --safetensors' | |
if mode == 'fixed': | |
run_cmd += f' --linear_dim {linear_dim}' | |
run_cmd += f' --conv_dim {conv_dim}' | |
if mode == 'threshold': | |
run_cmd += f' --linear_threshold {linear_threshold}' | |
run_cmd += f' --conv_threshold {conv_threshold}' | |
if mode == 'ratio': | |
run_cmd += f' --linear_ratio {linear_ratio}' | |
run_cmd += f' --conv_ratio {conv_ratio}' | |
if mode == 'quantile': | |
run_cmd += f' --linear_quantile {linear_quantile}' | |
run_cmd += f' --conv_quantile {conv_quantile}' | |
if use_sparse_bias: | |
run_cmd += f' --use_sparse_bias' | |
run_cmd += f' --sparsity {sparsity}' | |
if disable_cp: | |
run_cmd += f' --disable_cp' | |
run_cmd += f' "{base_model}"' | |
run_cmd += f' "{db_model}"' | |
run_cmd += f' "{output_name}"' | |
log.info(run_cmd) | |
# Run the command | |
if os.name == 'posix': | |
os.system(run_cmd) | |
else: | |
subprocess.run(run_cmd) | |
### | |
# Gradio UI | |
### | |
# def update_mode(mode): | |
# # 'fixed', 'threshold','ratio','quantile' | |
# if mode == 'fixed': | |
# return gr.Row.update(visible=True), gr.Row.update(visible=False), gr.Row.update(visible=False), gr.Row.update(visible=False) | |
# if mode == 'threshold': | |
# return gr.Row.update(visible=False), gr.Row.update(visible=True), gr.Row.update(visible=False), gr.Row.update(visible=False) | |
# if mode == 'ratio': | |
# return gr.Row.update(visible=False), gr.Row.update(visible=False), gr.Row.update(visible=True), gr.Row.update(visible=False) | |
# if mode == 'threshold': | |
# return gr.Row.update(visible=False), gr.Row.update(visible=False), gr.Row.update(visible=False), gr.Row.update(visible=True) | |
def update_mode(mode): | |
# Create a list of possible mode values | |
modes = ['fixed', 'threshold', 'ratio', 'quantile'] | |
# Initialize an empty list to store visibility updates | |
updates = [] | |
# Iterate through the possible modes | |
for m in modes: | |
# Add a visibility update for each mode, setting it to True if the input mode matches the current mode in the loop | |
updates.append(gr.Row.update(visible=(mode == m))) | |
# Return the visibility updates as a tuple | |
return tuple(updates) | |
def gradio_extract_lycoris_locon_tab(headless=False): | |
with gr.Tab('Extract LyCORIS LoCON'): | |
gr.Markdown( | |
'This utility can extract a LyCORIS LoCon network from a finetuned model.' | |
) | |
lora_ext = gr.Textbox( | |
value='*.safetensors', visible=False | |
) # lora_ext = gr.Textbox(value='*.safetensors *.pt', visible=False) | |
lora_ext_name = gr.Textbox(value='LoRA model types', visible=False) | |
model_ext = gr.Textbox(value='*.safetensors *.ckpt', visible=False) | |
model_ext_name = gr.Textbox(value='Model types', visible=False) | |
with gr.Row(): | |
db_model = gr.Textbox( | |
label='Finetuned model', | |
placeholder='Path to the finetuned model to extract', | |
interactive=True, | |
) | |
button_db_model_file = gr.Button( | |
folder_symbol, | |
elem_id='open_folder_small', | |
visible=(not headless), | |
) | |
button_db_model_file.click( | |
get_file_path, | |
inputs=[db_model, model_ext, model_ext_name], | |
outputs=db_model, | |
show_progress=False, | |
) | |
base_model = gr.Textbox( | |
label='Stable Diffusion base model', | |
placeholder='Stable Diffusion original model: ckpt or safetensors file', | |
interactive=True, | |
) | |
button_base_model_file = gr.Button( | |
folder_symbol, | |
elem_id='open_folder_small', | |
visible=(not headless), | |
) | |
button_base_model_file.click( | |
get_file_path, | |
inputs=[base_model, model_ext, model_ext_name], | |
outputs=base_model, | |
show_progress=False, | |
) | |
with gr.Row(): | |
output_name = gr.Textbox( | |
label='Save to', | |
placeholder='path where to save the extracted LoRA model...', | |
interactive=True, | |
) | |
button_output_name = gr.Button( | |
folder_symbol, | |
elem_id='open_folder_small', | |
visible=(not headless), | |
) | |
button_output_name.click( | |
get_saveasfilename_path, | |
inputs=[output_name, lora_ext, lora_ext_name], | |
outputs=output_name, | |
show_progress=False, | |
) | |
device = gr.Dropdown( | |
label='Device', | |
choices=[ | |
'cpu', | |
'cuda', | |
], | |
value='cuda', | |
interactive=True, | |
) | |
is_v2 = gr.Checkbox(label='is v2', value=False, interactive=True) | |
mode = gr.Dropdown( | |
label='Mode', | |
choices=['fixed', 'threshold', 'ratio', 'quantile'], | |
value='fixed', | |
interactive=True, | |
) | |
with gr.Row(visible=True) as fixed: | |
linear_dim = gr.Slider( | |
minimum=1, | |
maximum=1024, | |
label='Network Dimension', | |
value=1, | |
step=1, | |
interactive=True, | |
) | |
conv_dim = gr.Slider( | |
minimum=1, | |
maximum=1024, | |
label='Conv Dimension', | |
value=1, | |
step=1, | |
interactive=True, | |
) | |
with gr.Row(visible=False) as threshold: | |
linear_threshold = gr.Slider( | |
minimum=0, | |
maximum=1, | |
label='Linear threshold', | |
value=0.65, | |
step=0.01, | |
interactive=True, | |
info='The higher the value, the smaller the file. Recommended starting value: 0.65', | |
) | |
conv_threshold = gr.Slider( | |
minimum=0, | |
maximum=1, | |
label='Conv threshold', | |
value=0.65, | |
step=0.01, | |
interactive=True, | |
info='The higher the value, the smaller the file. Recommended starting value: 0.65', | |
) | |
with gr.Row(visible=False) as ratio: | |
linear_ratio = gr.Slider( | |
minimum=0, | |
maximum=1, | |
label='Linear ratio', | |
value=0.75, | |
step=0.01, | |
interactive=True, | |
info='The higher the value, the smaller the file. Recommended starting value: 0.75', | |
) | |
conv_ratio = gr.Slider( | |
minimum=0, | |
maximum=1, | |
label='Conv ratio', | |
value=0.75, | |
step=0.01, | |
interactive=True, | |
info='The higher the value, the smaller the file. Recommended starting value: 0.75', | |
) | |
with gr.Row(visible=False) as quantile: | |
linear_quantile = gr.Slider( | |
minimum=0, | |
maximum=1, | |
label='Linear quantile', | |
value=0.75, | |
step=0.01, | |
interactive=True, | |
info='The higher the value, the larger the file. Recommended starting value: 0.75', | |
) | |
conv_quantile = gr.Slider( | |
minimum=0, | |
maximum=1, | |
label='Conv quantile', | |
value=0.75, | |
step=0.01, | |
interactive=True, | |
info='The higher the value, the larger the file. Recommended starting value: 0.75', | |
) | |
with gr.Row(): | |
use_sparse_bias = gr.Checkbox( | |
label='Use sparse biais', value=False, interactive=True | |
) | |
sparsity = gr.Slider( | |
minimum=0, | |
maximum=1, | |
label='Sparsity', | |
value=0.98, | |
step=0.01, | |
interactive=True, | |
) | |
disable_cp = gr.Checkbox( | |
label='Disable CP decomposition', value=False, interactive=True | |
) | |
mode.change( | |
update_mode, | |
inputs=[mode], | |
outputs=[ | |
fixed, | |
threshold, | |
ratio, | |
quantile, | |
], | |
) | |
extract_button = gr.Button('Extract LyCORIS LoCon') | |
extract_button.click( | |
extract_lycoris_locon, | |
inputs=[ | |
db_model, | |
base_model, | |
output_name, | |
device, | |
is_v2, | |
mode, | |
linear_dim, | |
conv_dim, | |
linear_threshold, | |
conv_threshold, | |
linear_ratio, | |
conv_ratio, | |
linear_quantile, | |
conv_quantile, | |
use_sparse_bias, | |
sparsity, | |
disable_cp, | |
], | |
show_progress=False, | |
) | |