DiffusionModel / library /sdxl_train_util.py
thorfinn0330's picture
Upload folder using huggingface_hub
11c2c17 verified
import argparse
import gc
import math
import os
from types import SimpleNamespace
from typing import Any
import torch
from tqdm import tqdm
from transformers import CLIPTokenizer
import open_clip
from library import model_util, sdxl_model_util, train_util
from library.sdxl_lpw_stable_diffusion import SdxlStableDiffusionLongPromptWeightingPipeline
TOKENIZER_PATH = "openai/clip-vit-large-patch14"
DEFAULT_NOISE_OFFSET = 0.0357
# TODO: separate checkpoint for each U-Net/Text Encoder/VAE
def load_target_model(args, accelerator, model_version: str, weight_dtype):
# load models for each process
for pi in range(accelerator.state.num_processes):
if pi == accelerator.state.local_process_index:
print(f"loading model for process {accelerator.state.local_process_index}/{accelerator.state.num_processes}")
(
load_stable_diffusion_format,
text_encoder1,
text_encoder2,
vae,
unet,
logit_scale,
ckpt_info,
) = _load_target_model(args, model_version, weight_dtype, accelerator.device if args.lowram else "cpu")
# work on low-ram device
if args.lowram:
text_encoder1.to(accelerator.device)
text_encoder2.to(accelerator.device)
unet.to(accelerator.device)
vae.to(accelerator.device)
gc.collect()
torch.cuda.empty_cache()
accelerator.wait_for_everyone()
text_encoder1, text_encoder2, unet = train_util.transform_models_if_DDP([text_encoder1, text_encoder2, unet])
return load_stable_diffusion_format, text_encoder1, text_encoder2, vae, unet, logit_scale, ckpt_info
def _load_target_model(args: argparse.Namespace, model_version: str, weight_dtype, device="cpu"):
# only supports StableDiffusion
name_or_path = args.pretrained_model_name_or_path
name_or_path = os.readlink(name_or_path) if os.path.islink(name_or_path) else name_or_path
load_stable_diffusion_format = os.path.isfile(name_or_path) # determine SD or Diffusers
assert (
load_stable_diffusion_format
), f"only supports StableDiffusion format for SDXL / SDXLではStableDiffusion形式のみサポートしています: {name_or_path}"
print(f"load StableDiffusion checkpoint: {name_or_path}")
(
text_encoder1,
text_encoder2,
vae,
unet,
logit_scale,
ckpt_info,
) = sdxl_model_util.load_models_from_sdxl_checkpoint(model_version, name_or_path, device)
# VAEを読み込む
if args.vae is not None:
vae = model_util.load_vae(args.vae, weight_dtype)
print("additional VAE loaded")
return load_stable_diffusion_format, text_encoder1, text_encoder2, vae, unet, logit_scale, ckpt_info
class WrapperTokenizer:
# open clipのtokenizerをHuggingFaceのtokenizerと同じ形で使えるようにする
# make open clip tokenizer compatible with HuggingFace tokenizer
def __init__(self):
open_clip_tokenizer = open_clip.tokenizer._tokenizer
self.model_max_length = 77
self.bos_token_id = open_clip_tokenizer.all_special_ids[0]
self.eos_token_id = open_clip_tokenizer.all_special_ids[1]
self.pad_token_id = 0 # 結果から推定している assumption from result
def __call__(self, *args: Any, **kwds: Any) -> Any:
return self.tokenize(*args, **kwds)
def tokenize(self, text, padding=False, truncation=None, max_length=None, return_tensors=None):
if padding == "max_length":
# for training
assert max_length is not None
assert truncation == True
assert return_tensors == "pt"
input_ids = open_clip.tokenize(text, context_length=max_length)
return SimpleNamespace(**{"input_ids": input_ids})
# for weighted prompt
assert isinstance(text, str), f"input must be str: {text}"
input_ids = open_clip.tokenize(text, context_length=self.model_max_length)[0] # tokenizer returns list
# find eos
eos_index = (input_ids == self.eos_token_id).nonzero().max()
input_ids = input_ids[: eos_index + 1] # include eos
return SimpleNamespace(**{"input_ids": input_ids})
# for Textual Inversion
# わりと面倒くさいな……これWeb UIとかでどうするんだろう / this is a bit annoying... how to do this in Web UI?
def encode(self, text, add_special_tokens=False):
assert not add_special_tokens
input_ids = open_clip.tokenizer._tokenizer.encode(text)
return input_ids
def add_tokens(self, new_tokens):
tokens_to_add = []
for token in new_tokens:
token = token.lower()
if token + "</w>" not in open_clip.tokenizer._tokenizer.encoder:
tokens_to_add.append(token)
# open clipのtokenizerに直接追加する / add tokens to open clip tokenizer
for token in tokens_to_add:
open_clip.tokenizer._tokenizer.encoder[token + "</w>"] = len(open_clip.tokenizer._tokenizer.encoder)
open_clip.tokenizer._tokenizer.decoder[len(open_clip.tokenizer._tokenizer.decoder)] = token + "</w>"
open_clip.tokenizer._tokenizer.vocab_size += 1
# open clipのtokenizerのcacheに直接設定することで、bpeとかいうやつに含まれていなくてもtokenizeできるようにする
# めちゃくちゃ乱暴なので、open clipのtokenizerの仕様が変わったら動かなくなる
# set cache of open clip tokenizer directly to enable tokenization even if the token is not included in bpe
# this is very rough, so it will not work if the specification of open clip tokenizer changes
open_clip.tokenizer._tokenizer.cache[token] = token + "</w>"
return len(tokens_to_add)
def convert_tokens_to_ids(self, tokens):
input_ids = [open_clip.tokenizer._tokenizer.encoder[token + "</w>"] for token in tokens]
return input_ids
def __len__(self):
return open_clip.tokenizer._tokenizer.vocab_size
def load_tokenizers(args: argparse.Namespace):
print("prepare tokenizers")
original_path = TOKENIZER_PATH
tokenizer1: CLIPTokenizer = None
if args.tokenizer_cache_dir:
local_tokenizer_path = os.path.join(args.tokenizer_cache_dir, original_path.replace("/", "_"))
if os.path.exists(local_tokenizer_path):
print(f"load tokenizer from cache: {local_tokenizer_path}")
tokenizer1 = CLIPTokenizer.from_pretrained(local_tokenizer_path)
if tokenizer1 is None:
tokenizer1 = CLIPTokenizer.from_pretrained(original_path)
if args.tokenizer_cache_dir and not os.path.exists(local_tokenizer_path):
print(f"save Tokenizer to cache: {local_tokenizer_path}")
tokenizer1.save_pretrained(local_tokenizer_path)
if hasattr(args, "max_token_length") and args.max_token_length is not None:
print(f"update token length: {args.max_token_length}")
# tokenizer2 is from open_clip
# TODO caching
tokenizer2 = WrapperTokenizer()
return [tokenizer1, tokenizer2]
def get_hidden_states(
args: argparse.Namespace, input_ids1, input_ids2, tokenizer1, tokenizer2, text_encoder1, text_encoder2, weight_dtype=None
):
# input_ids: b,n,77 -> b*n, 77
b_size = input_ids1.size()[0]
input_ids1 = input_ids1.reshape((-1, tokenizer1.model_max_length)) # batch_size*n, 77
input_ids2 = input_ids2.reshape((-1, tokenizer2.model_max_length)) # batch_size*n, 77
# text_encoder1
enc_out = text_encoder1(input_ids1, output_hidden_states=True, return_dict=True)
hidden_states1 = enc_out["hidden_states"][11]
# text_encoder2
enc_out = text_encoder2(input_ids2, output_hidden_states=True, return_dict=True)
hidden_states2 = enc_out["hidden_states"][-2] # penuultimate layer
pool2 = enc_out["text_embeds"]
# b*n, 77, 768 or 1280 -> b, n*77, 768 or 1280
n_size = 1 if args.max_token_length is None else args.max_token_length // 75
hidden_states1 = hidden_states1.reshape((b_size, -1, hidden_states1.shape[-1]))
hidden_states2 = hidden_states2.reshape((b_size, -1, hidden_states2.shape[-1]))
if args.max_token_length is not None:
# bs*3, 77, 768 or 1024
# encoder1: <BOS>...<EOS> の三連を <BOS>...<EOS> へ戻す
states_list = [hidden_states1[:, 0].unsqueeze(1)] # <BOS>
for i in range(1, args.max_token_length, tokenizer1.model_max_length):
states_list.append(hidden_states1[:, i : i + tokenizer1.model_max_length - 2]) # <BOS> の後から <EOS> の前まで
states_list.append(hidden_states1[:, -1].unsqueeze(1)) # <EOS>
hidden_states1 = torch.cat(states_list, dim=1)
# v2: <BOS>...<EOS> <PAD> ... の三連を <BOS>...<EOS> <PAD> ... へ戻す 正直この実装でいいのかわからん
states_list = [hidden_states2[:, 0].unsqueeze(1)] # <BOS>
for i in range(1, args.max_token_length, tokenizer2.model_max_length):
chunk = hidden_states2[:, i : i + tokenizer2.model_max_length - 2] # <BOS> の後から 最後の前まで
# this causes an error:
# RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation
# if i > 1:
# for j in range(len(chunk)): # batch_size
# if input_ids2[n_index + j * n_size, 1] == tokenizer2.eos_token_id: # 空、つまり <BOS> <EOS> <PAD> ...のパターン
# chunk[j, 0] = chunk[j, 1] # 次の <PAD> の値をコピーする
states_list.append(chunk) # <BOS> の後から <EOS> の前まで
states_list.append(hidden_states2[:, -1].unsqueeze(1)) # <EOS> か <PAD> のどちらか
hidden_states2 = torch.cat(states_list, dim=1)
# pool はnの最初のものを使う
pool2 = pool2[::n_size]
if weight_dtype is not None:
# this is required for additional network training
hidden_states1 = hidden_states1.to(weight_dtype)
hidden_states2 = hidden_states2.to(weight_dtype)
return hidden_states1, hidden_states2, pool2
def timestep_embedding(timesteps, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
device=timesteps.device
)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def get_timestep_embedding(x, outdim):
assert len(x.shape) == 2
b, dims = x.shape[0], x.shape[1]
x = torch.flatten(x)
emb = timestep_embedding(x, outdim)
emb = torch.reshape(emb, (b, dims * outdim))
return emb
def get_size_embeddings(orig_size, crop_size, target_size, device):
emb1 = get_timestep_embedding(orig_size, 256)
emb2 = get_timestep_embedding(crop_size, 256)
emb3 = get_timestep_embedding(target_size, 256)
vector = torch.cat([emb1, emb2, emb3], dim=1).to(device)
return vector
def save_sd_model_on_train_end(
args: argparse.Namespace,
src_path: str,
save_stable_diffusion_format: bool,
use_safetensors: bool,
save_dtype: torch.dtype,
epoch: int,
global_step: int,
text_encoder1,
text_encoder2,
unet,
vae,
logit_scale,
ckpt_info,
):
def sd_saver(ckpt_file, epoch_no, global_step):
sdxl_model_util.save_stable_diffusion_checkpoint(
ckpt_file,
text_encoder1,
text_encoder2,
unet,
epoch_no,
global_step,
ckpt_info,
vae,
logit_scale,
save_dtype,
)
def diffusers_saver(out_dir):
raise NotImplementedError("diffusers_saver is not implemented")
train_util.save_sd_model_on_train_end_common(
args, save_stable_diffusion_format, use_safetensors, epoch, global_step, sd_saver, diffusers_saver
)
# epochとstepの保存、メタデータにepoch/stepが含まれ引数が同じになるため、統合している
# on_epoch_end: Trueならepoch終了時、Falseならstep経過時
def save_sd_model_on_epoch_end_or_stepwise(
args: argparse.Namespace,
on_epoch_end: bool,
accelerator,
src_path,
save_stable_diffusion_format: bool,
use_safetensors: bool,
save_dtype: torch.dtype,
epoch: int,
num_train_epochs: int,
global_step: int,
text_encoder1,
text_encoder2,
unet,
vae,
logit_scale,
ckpt_info,
):
def sd_saver(ckpt_file, epoch_no, global_step):
sdxl_model_util.save_stable_diffusion_checkpoint(
ckpt_file,
text_encoder1,
text_encoder2,
unet,
epoch_no,
global_step,
ckpt_info,
vae,
logit_scale,
save_dtype,
)
def diffusers_saver(out_dir):
raise NotImplementedError("diffusers_saver is not implemented")
train_util.save_sd_model_on_epoch_end_or_stepwise_common(
args,
on_epoch_end,
accelerator,
save_stable_diffusion_format,
use_safetensors,
epoch,
num_train_epochs,
global_step,
sd_saver,
diffusers_saver,
)
# TextEncoderの出力をキャッシュする
# weight_dtypeを指定するとText Encoderそのもの、およひ出力がweight_dtypeになる
def cache_text_encoder_outputs(args, accelerator, tokenizers, text_encoders, dataset, weight_dtype):
print("caching text encoder outputs")
tokenizer1, tokenizer2 = tokenizers
text_encoder1, text_encoder2 = text_encoders
text_encoder1.to(accelerator.device)
text_encoder2.to(accelerator.device)
if weight_dtype is not None:
text_encoder1.to(dtype=weight_dtype)
text_encoder2.to(dtype=weight_dtype)
text_encoder1_cache = {}
text_encoder2_cache = {}
for batch in tqdm(dataset):
input_ids1_batch = batch["input_ids"].to(accelerator.device)
input_ids2_batch = batch["input_ids2"].to(accelerator.device)
# split batch to avoid OOM
# TODO specify batch size by args
for input_id1, input_id2 in zip(input_ids1_batch.split(1), input_ids2_batch.split(1)):
# remove input_ids already in cache
input_id1_cache_key = tuple(input_id1.flatten().tolist())
input_id2_cache_key = tuple(input_id2.flatten().tolist())
if input_id1_cache_key in text_encoder1_cache:
assert input_id2_cache_key in text_encoder2_cache
continue
with torch.no_grad():
encoder_hidden_states1, encoder_hidden_states2, pool2 = get_hidden_states(
args,
input_id1,
input_id2,
tokenizer1,
tokenizer2,
text_encoder1,
text_encoder2,
None if not args.full_fp16 else weight_dtype,
)
encoder_hidden_states1 = encoder_hidden_states1.detach().to("cpu").squeeze(0) # n*75+2,768
encoder_hidden_states2 = encoder_hidden_states2.detach().to("cpu").squeeze(0) # n*75+2,1280
pool2 = pool2.detach().to("cpu").squeeze(0) # 1280
text_encoder1_cache[input_id1_cache_key] = encoder_hidden_states1
text_encoder2_cache[input_id2_cache_key] = (encoder_hidden_states2, pool2)
return text_encoder1_cache, text_encoder2_cache
def add_sdxl_training_arguments(parser: argparse.ArgumentParser):
parser.add_argument(
"--cache_text_encoder_outputs", action="store_true", help="cache text encoder outputs / text encoderの出力をキャッシュする"
)
def verify_sdxl_training_args(args: argparse.Namespace):
assert (
not args.v2 and not args.v_parameterization
), "v2 or v_parameterization cannot be enabled in SDXL training / SDXL学習ではv2とv_parameterizationを有効にすることはできません"
if args.clip_skip is not None:
print("clip_skip will be unexpected / SDXL学習ではclip_skipは動作しません")
if args.multires_noise_iterations:
print(
f"Warning: SDXL has been trained with noise_offset={DEFAULT_NOISE_OFFSET}, but noise_offset is disabled due to multires_noise_iterations / SDXLはnoise_offset={DEFAULT_NOISE_OFFSET}で学習されていますが、multires_noise_iterationsが有効になっているためnoise_offsetは無効になります"
)
else:
if args.noise_offset is None:
args.noise_offset = DEFAULT_NOISE_OFFSET
elif args.noise_offset != DEFAULT_NOISE_OFFSET:
print(
f"Warning: SDXL has been trained with noise_offset={DEFAULT_NOISE_OFFSET} / SDXLはnoise_offset={DEFAULT_NOISE_OFFSET}で学習されています"
)
print(f"noise_offset is set to {args.noise_offset} / noise_offsetが{args.noise_offset}に設定されました")
assert (
not hasattr(args, "weighted_captions") or not args.weighted_captions
), "weighted_captions cannot be enabled in SDXL training currently / SDXL学習では今のところweighted_captionsを有効にすることはできません"
def sample_images(*args, **kwargs):
return train_util.sample_images_common(SdxlStableDiffusionLongPromptWeightingPipeline, *args, **kwargs)