Spaces:
Build error
Build error
import argparse | |
import gc | |
import math | |
import os | |
from types import SimpleNamespace | |
from typing import Any | |
import torch | |
from tqdm import tqdm | |
from transformers import CLIPTokenizer | |
import open_clip | |
from library import model_util, sdxl_model_util, train_util | |
from library.sdxl_lpw_stable_diffusion import SdxlStableDiffusionLongPromptWeightingPipeline | |
TOKENIZER_PATH = "openai/clip-vit-large-patch14" | |
DEFAULT_NOISE_OFFSET = 0.0357 | |
# TODO: separate checkpoint for each U-Net/Text Encoder/VAE | |
def load_target_model(args, accelerator, model_version: str, weight_dtype): | |
# load models for each process | |
for pi in range(accelerator.state.num_processes): | |
if pi == accelerator.state.local_process_index: | |
print(f"loading model for process {accelerator.state.local_process_index}/{accelerator.state.num_processes}") | |
( | |
load_stable_diffusion_format, | |
text_encoder1, | |
text_encoder2, | |
vae, | |
unet, | |
logit_scale, | |
ckpt_info, | |
) = _load_target_model(args, model_version, weight_dtype, accelerator.device if args.lowram else "cpu") | |
# work on low-ram device | |
if args.lowram: | |
text_encoder1.to(accelerator.device) | |
text_encoder2.to(accelerator.device) | |
unet.to(accelerator.device) | |
vae.to(accelerator.device) | |
gc.collect() | |
torch.cuda.empty_cache() | |
accelerator.wait_for_everyone() | |
text_encoder1, text_encoder2, unet = train_util.transform_models_if_DDP([text_encoder1, text_encoder2, unet]) | |
return load_stable_diffusion_format, text_encoder1, text_encoder2, vae, unet, logit_scale, ckpt_info | |
def _load_target_model(args: argparse.Namespace, model_version: str, weight_dtype, device="cpu"): | |
# only supports StableDiffusion | |
name_or_path = args.pretrained_model_name_or_path | |
name_or_path = os.readlink(name_or_path) if os.path.islink(name_or_path) else name_or_path | |
load_stable_diffusion_format = os.path.isfile(name_or_path) # determine SD or Diffusers | |
assert ( | |
load_stable_diffusion_format | |
), f"only supports StableDiffusion format for SDXL / SDXLではStableDiffusion形式のみサポートしています: {name_or_path}" | |
print(f"load StableDiffusion checkpoint: {name_or_path}") | |
( | |
text_encoder1, | |
text_encoder2, | |
vae, | |
unet, | |
logit_scale, | |
ckpt_info, | |
) = sdxl_model_util.load_models_from_sdxl_checkpoint(model_version, name_or_path, device) | |
# VAEを読み込む | |
if args.vae is not None: | |
vae = model_util.load_vae(args.vae, weight_dtype) | |
print("additional VAE loaded") | |
return load_stable_diffusion_format, text_encoder1, text_encoder2, vae, unet, logit_scale, ckpt_info | |
class WrapperTokenizer: | |
# open clipのtokenizerをHuggingFaceのtokenizerと同じ形で使えるようにする | |
# make open clip tokenizer compatible with HuggingFace tokenizer | |
def __init__(self): | |
open_clip_tokenizer = open_clip.tokenizer._tokenizer | |
self.model_max_length = 77 | |
self.bos_token_id = open_clip_tokenizer.all_special_ids[0] | |
self.eos_token_id = open_clip_tokenizer.all_special_ids[1] | |
self.pad_token_id = 0 # 結果から推定している assumption from result | |
def __call__(self, *args: Any, **kwds: Any) -> Any: | |
return self.tokenize(*args, **kwds) | |
def tokenize(self, text, padding=False, truncation=None, max_length=None, return_tensors=None): | |
if padding == "max_length": | |
# for training | |
assert max_length is not None | |
assert truncation == True | |
assert return_tensors == "pt" | |
input_ids = open_clip.tokenize(text, context_length=max_length) | |
return SimpleNamespace(**{"input_ids": input_ids}) | |
# for weighted prompt | |
assert isinstance(text, str), f"input must be str: {text}" | |
input_ids = open_clip.tokenize(text, context_length=self.model_max_length)[0] # tokenizer returns list | |
# find eos | |
eos_index = (input_ids == self.eos_token_id).nonzero().max() | |
input_ids = input_ids[: eos_index + 1] # include eos | |
return SimpleNamespace(**{"input_ids": input_ids}) | |
# for Textual Inversion | |
# わりと面倒くさいな……これWeb UIとかでどうするんだろう / this is a bit annoying... how to do this in Web UI? | |
def encode(self, text, add_special_tokens=False): | |
assert not add_special_tokens | |
input_ids = open_clip.tokenizer._tokenizer.encode(text) | |
return input_ids | |
def add_tokens(self, new_tokens): | |
tokens_to_add = [] | |
for token in new_tokens: | |
token = token.lower() | |
if token + "</w>" not in open_clip.tokenizer._tokenizer.encoder: | |
tokens_to_add.append(token) | |
# open clipのtokenizerに直接追加する / add tokens to open clip tokenizer | |
for token in tokens_to_add: | |
open_clip.tokenizer._tokenizer.encoder[token + "</w>"] = len(open_clip.tokenizer._tokenizer.encoder) | |
open_clip.tokenizer._tokenizer.decoder[len(open_clip.tokenizer._tokenizer.decoder)] = token + "</w>" | |
open_clip.tokenizer._tokenizer.vocab_size += 1 | |
# open clipのtokenizerのcacheに直接設定することで、bpeとかいうやつに含まれていなくてもtokenizeできるようにする | |
# めちゃくちゃ乱暴なので、open clipのtokenizerの仕様が変わったら動かなくなる | |
# set cache of open clip tokenizer directly to enable tokenization even if the token is not included in bpe | |
# this is very rough, so it will not work if the specification of open clip tokenizer changes | |
open_clip.tokenizer._tokenizer.cache[token] = token + "</w>" | |
return len(tokens_to_add) | |
def convert_tokens_to_ids(self, tokens): | |
input_ids = [open_clip.tokenizer._tokenizer.encoder[token + "</w>"] for token in tokens] | |
return input_ids | |
def __len__(self): | |
return open_clip.tokenizer._tokenizer.vocab_size | |
def load_tokenizers(args: argparse.Namespace): | |
print("prepare tokenizers") | |
original_path = TOKENIZER_PATH | |
tokenizer1: CLIPTokenizer = None | |
if args.tokenizer_cache_dir: | |
local_tokenizer_path = os.path.join(args.tokenizer_cache_dir, original_path.replace("/", "_")) | |
if os.path.exists(local_tokenizer_path): | |
print(f"load tokenizer from cache: {local_tokenizer_path}") | |
tokenizer1 = CLIPTokenizer.from_pretrained(local_tokenizer_path) | |
if tokenizer1 is None: | |
tokenizer1 = CLIPTokenizer.from_pretrained(original_path) | |
if args.tokenizer_cache_dir and not os.path.exists(local_tokenizer_path): | |
print(f"save Tokenizer to cache: {local_tokenizer_path}") | |
tokenizer1.save_pretrained(local_tokenizer_path) | |
if hasattr(args, "max_token_length") and args.max_token_length is not None: | |
print(f"update token length: {args.max_token_length}") | |
# tokenizer2 is from open_clip | |
# TODO caching | |
tokenizer2 = WrapperTokenizer() | |
return [tokenizer1, tokenizer2] | |
def get_hidden_states( | |
args: argparse.Namespace, input_ids1, input_ids2, tokenizer1, tokenizer2, text_encoder1, text_encoder2, weight_dtype=None | |
): | |
# input_ids: b,n,77 -> b*n, 77 | |
b_size = input_ids1.size()[0] | |
input_ids1 = input_ids1.reshape((-1, tokenizer1.model_max_length)) # batch_size*n, 77 | |
input_ids2 = input_ids2.reshape((-1, tokenizer2.model_max_length)) # batch_size*n, 77 | |
# text_encoder1 | |
enc_out = text_encoder1(input_ids1, output_hidden_states=True, return_dict=True) | |
hidden_states1 = enc_out["hidden_states"][11] | |
# text_encoder2 | |
enc_out = text_encoder2(input_ids2, output_hidden_states=True, return_dict=True) | |
hidden_states2 = enc_out["hidden_states"][-2] # penuultimate layer | |
pool2 = enc_out["text_embeds"] | |
# b*n, 77, 768 or 1280 -> b, n*77, 768 or 1280 | |
n_size = 1 if args.max_token_length is None else args.max_token_length // 75 | |
hidden_states1 = hidden_states1.reshape((b_size, -1, hidden_states1.shape[-1])) | |
hidden_states2 = hidden_states2.reshape((b_size, -1, hidden_states2.shape[-1])) | |
if args.max_token_length is not None: | |
# bs*3, 77, 768 or 1024 | |
# encoder1: <BOS>...<EOS> の三連を <BOS>...<EOS> へ戻す | |
states_list = [hidden_states1[:, 0].unsqueeze(1)] # <BOS> | |
for i in range(1, args.max_token_length, tokenizer1.model_max_length): | |
states_list.append(hidden_states1[:, i : i + tokenizer1.model_max_length - 2]) # <BOS> の後から <EOS> の前まで | |
states_list.append(hidden_states1[:, -1].unsqueeze(1)) # <EOS> | |
hidden_states1 = torch.cat(states_list, dim=1) | |
# v2: <BOS>...<EOS> <PAD> ... の三連を <BOS>...<EOS> <PAD> ... へ戻す 正直この実装でいいのかわからん | |
states_list = [hidden_states2[:, 0].unsqueeze(1)] # <BOS> | |
for i in range(1, args.max_token_length, tokenizer2.model_max_length): | |
chunk = hidden_states2[:, i : i + tokenizer2.model_max_length - 2] # <BOS> の後から 最後の前まで | |
# this causes an error: | |
# RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation | |
# if i > 1: | |
# for j in range(len(chunk)): # batch_size | |
# if input_ids2[n_index + j * n_size, 1] == tokenizer2.eos_token_id: # 空、つまり <BOS> <EOS> <PAD> ...のパターン | |
# chunk[j, 0] = chunk[j, 1] # 次の <PAD> の値をコピーする | |
states_list.append(chunk) # <BOS> の後から <EOS> の前まで | |
states_list.append(hidden_states2[:, -1].unsqueeze(1)) # <EOS> か <PAD> のどちらか | |
hidden_states2 = torch.cat(states_list, dim=1) | |
# pool はnの最初のものを使う | |
pool2 = pool2[::n_size] | |
if weight_dtype is not None: | |
# this is required for additional network training | |
hidden_states1 = hidden_states1.to(weight_dtype) | |
hidden_states2 = hidden_states2.to(weight_dtype) | |
return hidden_states1, hidden_states2, pool2 | |
def timestep_embedding(timesteps, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param timesteps: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an [N x dim] Tensor of positional embeddings. | |
""" | |
half = dim // 2 | |
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to( | |
device=timesteps.device | |
) | |
args = timesteps[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
def get_timestep_embedding(x, outdim): | |
assert len(x.shape) == 2 | |
b, dims = x.shape[0], x.shape[1] | |
x = torch.flatten(x) | |
emb = timestep_embedding(x, outdim) | |
emb = torch.reshape(emb, (b, dims * outdim)) | |
return emb | |
def get_size_embeddings(orig_size, crop_size, target_size, device): | |
emb1 = get_timestep_embedding(orig_size, 256) | |
emb2 = get_timestep_embedding(crop_size, 256) | |
emb3 = get_timestep_embedding(target_size, 256) | |
vector = torch.cat([emb1, emb2, emb3], dim=1).to(device) | |
return vector | |
def save_sd_model_on_train_end( | |
args: argparse.Namespace, | |
src_path: str, | |
save_stable_diffusion_format: bool, | |
use_safetensors: bool, | |
save_dtype: torch.dtype, | |
epoch: int, | |
global_step: int, | |
text_encoder1, | |
text_encoder2, | |
unet, | |
vae, | |
logit_scale, | |
ckpt_info, | |
): | |
def sd_saver(ckpt_file, epoch_no, global_step): | |
sdxl_model_util.save_stable_diffusion_checkpoint( | |
ckpt_file, | |
text_encoder1, | |
text_encoder2, | |
unet, | |
epoch_no, | |
global_step, | |
ckpt_info, | |
vae, | |
logit_scale, | |
save_dtype, | |
) | |
def diffusers_saver(out_dir): | |
raise NotImplementedError("diffusers_saver is not implemented") | |
train_util.save_sd_model_on_train_end_common( | |
args, save_stable_diffusion_format, use_safetensors, epoch, global_step, sd_saver, diffusers_saver | |
) | |
# epochとstepの保存、メタデータにepoch/stepが含まれ引数が同じになるため、統合している | |
# on_epoch_end: Trueならepoch終了時、Falseならstep経過時 | |
def save_sd_model_on_epoch_end_or_stepwise( | |
args: argparse.Namespace, | |
on_epoch_end: bool, | |
accelerator, | |
src_path, | |
save_stable_diffusion_format: bool, | |
use_safetensors: bool, | |
save_dtype: torch.dtype, | |
epoch: int, | |
num_train_epochs: int, | |
global_step: int, | |
text_encoder1, | |
text_encoder2, | |
unet, | |
vae, | |
logit_scale, | |
ckpt_info, | |
): | |
def sd_saver(ckpt_file, epoch_no, global_step): | |
sdxl_model_util.save_stable_diffusion_checkpoint( | |
ckpt_file, | |
text_encoder1, | |
text_encoder2, | |
unet, | |
epoch_no, | |
global_step, | |
ckpt_info, | |
vae, | |
logit_scale, | |
save_dtype, | |
) | |
def diffusers_saver(out_dir): | |
raise NotImplementedError("diffusers_saver is not implemented") | |
train_util.save_sd_model_on_epoch_end_or_stepwise_common( | |
args, | |
on_epoch_end, | |
accelerator, | |
save_stable_diffusion_format, | |
use_safetensors, | |
epoch, | |
num_train_epochs, | |
global_step, | |
sd_saver, | |
diffusers_saver, | |
) | |
# TextEncoderの出力をキャッシュする | |
# weight_dtypeを指定するとText Encoderそのもの、およひ出力がweight_dtypeになる | |
def cache_text_encoder_outputs(args, accelerator, tokenizers, text_encoders, dataset, weight_dtype): | |
print("caching text encoder outputs") | |
tokenizer1, tokenizer2 = tokenizers | |
text_encoder1, text_encoder2 = text_encoders | |
text_encoder1.to(accelerator.device) | |
text_encoder2.to(accelerator.device) | |
if weight_dtype is not None: | |
text_encoder1.to(dtype=weight_dtype) | |
text_encoder2.to(dtype=weight_dtype) | |
text_encoder1_cache = {} | |
text_encoder2_cache = {} | |
for batch in tqdm(dataset): | |
input_ids1_batch = batch["input_ids"].to(accelerator.device) | |
input_ids2_batch = batch["input_ids2"].to(accelerator.device) | |
# split batch to avoid OOM | |
# TODO specify batch size by args | |
for input_id1, input_id2 in zip(input_ids1_batch.split(1), input_ids2_batch.split(1)): | |
# remove input_ids already in cache | |
input_id1_cache_key = tuple(input_id1.flatten().tolist()) | |
input_id2_cache_key = tuple(input_id2.flatten().tolist()) | |
if input_id1_cache_key in text_encoder1_cache: | |
assert input_id2_cache_key in text_encoder2_cache | |
continue | |
with torch.no_grad(): | |
encoder_hidden_states1, encoder_hidden_states2, pool2 = get_hidden_states( | |
args, | |
input_id1, | |
input_id2, | |
tokenizer1, | |
tokenizer2, | |
text_encoder1, | |
text_encoder2, | |
None if not args.full_fp16 else weight_dtype, | |
) | |
encoder_hidden_states1 = encoder_hidden_states1.detach().to("cpu").squeeze(0) # n*75+2,768 | |
encoder_hidden_states2 = encoder_hidden_states2.detach().to("cpu").squeeze(0) # n*75+2,1280 | |
pool2 = pool2.detach().to("cpu").squeeze(0) # 1280 | |
text_encoder1_cache[input_id1_cache_key] = encoder_hidden_states1 | |
text_encoder2_cache[input_id2_cache_key] = (encoder_hidden_states2, pool2) | |
return text_encoder1_cache, text_encoder2_cache | |
def add_sdxl_training_arguments(parser: argparse.ArgumentParser): | |
parser.add_argument( | |
"--cache_text_encoder_outputs", action="store_true", help="cache text encoder outputs / text encoderの出力をキャッシュする" | |
) | |
def verify_sdxl_training_args(args: argparse.Namespace): | |
assert ( | |
not args.v2 and not args.v_parameterization | |
), "v2 or v_parameterization cannot be enabled in SDXL training / SDXL学習ではv2とv_parameterizationを有効にすることはできません" | |
if args.clip_skip is not None: | |
print("clip_skip will be unexpected / SDXL学習ではclip_skipは動作しません") | |
if args.multires_noise_iterations: | |
print( | |
f"Warning: SDXL has been trained with noise_offset={DEFAULT_NOISE_OFFSET}, but noise_offset is disabled due to multires_noise_iterations / SDXLはnoise_offset={DEFAULT_NOISE_OFFSET}で学習されていますが、multires_noise_iterationsが有効になっているためnoise_offsetは無効になります" | |
) | |
else: | |
if args.noise_offset is None: | |
args.noise_offset = DEFAULT_NOISE_OFFSET | |
elif args.noise_offset != DEFAULT_NOISE_OFFSET: | |
print( | |
f"Warning: SDXL has been trained with noise_offset={DEFAULT_NOISE_OFFSET} / SDXLはnoise_offset={DEFAULT_NOISE_OFFSET}で学習されています" | |
) | |
print(f"noise_offset is set to {args.noise_offset} / noise_offsetが{args.noise_offset}に設定されました") | |
assert ( | |
not hasattr(args, "weighted_captions") or not args.weighted_captions | |
), "weighted_captions cannot be enabled in SDXL training currently / SDXL学習では今のところweighted_captionsを有効にすることはできません" | |
def sample_images(*args, **kwargs): | |
return train_util.sample_images_common(SdxlStableDiffusionLongPromptWeightingPipeline, *args, **kwargs) | |