DiffusionModel / networks /extract_lora_from_dylora.py
thorfinn0330's picture
Upload folder using huggingface_hub
11c2c17 verified
# Convert LoRA to different rank approximation (should only be used to go to lower rank)
# This code is based off the extract_lora_from_models.py file which is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py
# Thanks to cloneofsimo
import argparse
import math
import os
import torch
from safetensors.torch import load_file, save_file, safe_open
from tqdm import tqdm
from library import train_util, model_util
import numpy as np
def load_state_dict(file_name):
if model_util.is_safetensors(file_name):
sd = load_file(file_name)
with safe_open(file_name, framework="pt") as f:
metadata = f.metadata()
else:
sd = torch.load(file_name, map_location="cpu")
metadata = None
return sd, metadata
def save_to_file(file_name, model, metadata):
if model_util.is_safetensors(file_name):
save_file(model, file_name, metadata)
else:
torch.save(model, file_name)
def split_lora_model(lora_sd, unit):
max_rank = 0
# Extract loaded lora dim and alpha
for key, value in lora_sd.items():
if "lora_down" in key:
rank = value.size()[0]
if rank > max_rank:
max_rank = rank
print(f"Max rank: {max_rank}")
rank = unit
split_models = []
new_alpha = None
while rank < max_rank:
print(f"Splitting rank {rank}")
new_sd = {}
for key, value in lora_sd.items():
if "lora_down" in key:
new_sd[key] = value[:rank].contiguous()
elif "lora_up" in key:
new_sd[key] = value[:, :rank].contiguous()
else:
# なぜかscaleするとおかしくなる……
# this_rank = lora_sd[key.replace("alpha", "lora_down.weight")].size()[0]
# scale = math.sqrt(this_rank / rank) # rank is > unit
# print(key, value.size(), this_rank, rank, value, scale)
# new_alpha = value * scale # always same
# new_sd[key] = new_alpha
new_sd[key] = value
split_models.append((new_sd, rank, new_alpha))
rank += unit
return max_rank, split_models
def split(args):
print("loading Model...")
lora_sd, metadata = load_state_dict(args.model)
print("Splitting Model...")
original_rank, split_models = split_lora_model(lora_sd, args.unit)
comment = metadata.get("ss_training_comment", "")
for state_dict, new_rank, new_alpha in split_models:
# update metadata
if metadata is None:
new_metadata = {}
else:
new_metadata = metadata.copy()
new_metadata["ss_training_comment"] = f"split from DyLoRA, rank {original_rank} to {new_rank}; {comment}"
new_metadata["ss_network_dim"] = str(new_rank)
# new_metadata["ss_network_alpha"] = str(new_alpha.float().numpy())
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
filename, ext = os.path.splitext(args.save_to)
model_file_name = filename + f"-{new_rank:04d}{ext}"
print(f"saving model to: {model_file_name}")
save_to_file(model_file_name, state_dict, new_metadata)
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument("--unit", type=int, default=None, help="size of rank to split into / rankを分割するサイズ")
parser.add_argument(
"--save_to",
type=str,
default=None,
help="destination base file name: ckpt or safetensors file / 保存先のファイル名のbase、ckptまたはsafetensors",
)
parser.add_argument(
"--model",
type=str,
default=None,
help="DyLoRA model to resize at to new rank: ckpt or safetensors file / 読み込むDyLoRAモデル、ckptまたはsafetensors",
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
split(args)