owaiskha9654 commited on
Commit
8fdd404
·
1 Parent(s): 736fd4d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -14
app.py CHANGED
@@ -11,12 +11,7 @@ yolov7_custom_weights = hf_hub_download(repo_id=REPO_ID, filename=FILENAME)
11
 
12
  model = torch.hub.load('Owaiskhan9654/yolov7-1:main',model='custom', path_or_model=yolov7_custom_weights, force_reload=True) # Github repository https://github.com/Owaiskhan9654
13
 
14
- def object_detection(
15
- image: gr.inputs.Image = None,
16
- model_path: gr.inputs.Dropdown = None,
17
- image_size: gr.inputs.Slider = 640,
18
- conf_threshold: gr.inputs.Slider = 0.25,
19
- iou_threshold: gr.inputs.Slider = 0.45,):
20
 
21
 
22
  results = model(image)
@@ -35,14 +30,13 @@ title = "Yolov7 Custom"
35
 
36
  # image = gr.inputs.Image(shape=(640, 640), image_mode="RGB", source="upload", label="Upload Image", optional=False)
37
 
38
- inputs = [
39
- gr.inputs.Image(shape=(640, 640), image_mode="RGB", source="upload", label="Upload Image", optional=False),
40
- gr.inputs.Dropdown(["best.pt",],
41
- default="best.pt", label="Model"),
42
- gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
43
- gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
44
- gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
45
- ]
46
  outputs = gr.outputs.Image(type="pil", label="Output Image")
47
  outputs_cls = gr.Label(label= "Categories Detected Proportion Statistics" )
48
 
 
11
 
12
  model = torch.hub.load('Owaiskhan9654/yolov7-1:main',model='custom', path_or_model=yolov7_custom_weights, force_reload=True) # Github repository https://github.com/Owaiskhan9654
13
 
14
+ def object_detection(image: gr.inputs.Image = None):
 
 
 
 
 
15
 
16
 
17
  results = model(image)
 
30
 
31
  # image = gr.inputs.Image(shape=(640, 640), image_mode="RGB", source="upload", label="Upload Image", optional=False)
32
 
33
+ inputs = gr.inputs.Image(shape=(640, 640), image_mode="RGB", source="upload", label="Upload Image", optional=False)
34
+ # gr.inputs.Dropdown(["best.pt",],
35
+ # default="best.pt", label="Model"),
36
+ # gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
37
+ # gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
38
+ # gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
39
+ # ]
 
40
  outputs = gr.outputs.Image(type="pil", label="Output Image")
41
  outputs_cls = gr.Label(label= "Categories Detected Proportion Statistics" )
42