Spaces:
Running
on
Zero
Running
on
Zero
Add files
Browse files- .gitignore +162 -0
- .gitmodules +3 -0
- .pre-commit-config.yaml +37 -0
- .style.yapf +5 -0
- Dockerfile +53 -0
- README.md +3 -3
- app.py +105 -0
- model.py +515 -0
- requirements.txt +13 -0
- style.css +3 -0
- unidiffuser +1 -0
.gitignore
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
models/
|
2 |
+
|
3 |
+
# Byte-compiled / optimized / DLL files
|
4 |
+
__pycache__/
|
5 |
+
*.py[cod]
|
6 |
+
*$py.class
|
7 |
+
|
8 |
+
# C extensions
|
9 |
+
*.so
|
10 |
+
|
11 |
+
# Distribution / packaging
|
12 |
+
.Python
|
13 |
+
build/
|
14 |
+
develop-eggs/
|
15 |
+
dist/
|
16 |
+
downloads/
|
17 |
+
eggs/
|
18 |
+
.eggs/
|
19 |
+
lib/
|
20 |
+
lib64/
|
21 |
+
parts/
|
22 |
+
sdist/
|
23 |
+
var/
|
24 |
+
wheels/
|
25 |
+
share/python-wheels/
|
26 |
+
*.egg-info/
|
27 |
+
.installed.cfg
|
28 |
+
*.egg
|
29 |
+
MANIFEST
|
30 |
+
|
31 |
+
# PyInstaller
|
32 |
+
# Usually these files are written by a python script from a template
|
33 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
34 |
+
*.manifest
|
35 |
+
*.spec
|
36 |
+
|
37 |
+
# Installer logs
|
38 |
+
pip-log.txt
|
39 |
+
pip-delete-this-directory.txt
|
40 |
+
|
41 |
+
# Unit test / coverage reports
|
42 |
+
htmlcov/
|
43 |
+
.tox/
|
44 |
+
.nox/
|
45 |
+
.coverage
|
46 |
+
.coverage.*
|
47 |
+
.cache
|
48 |
+
nosetests.xml
|
49 |
+
coverage.xml
|
50 |
+
*.cover
|
51 |
+
*.py,cover
|
52 |
+
.hypothesis/
|
53 |
+
.pytest_cache/
|
54 |
+
cover/
|
55 |
+
|
56 |
+
# Translations
|
57 |
+
*.mo
|
58 |
+
*.pot
|
59 |
+
|
60 |
+
# Django stuff:
|
61 |
+
*.log
|
62 |
+
local_settings.py
|
63 |
+
db.sqlite3
|
64 |
+
db.sqlite3-journal
|
65 |
+
|
66 |
+
# Flask stuff:
|
67 |
+
instance/
|
68 |
+
.webassets-cache
|
69 |
+
|
70 |
+
# Scrapy stuff:
|
71 |
+
.scrapy
|
72 |
+
|
73 |
+
# Sphinx documentation
|
74 |
+
docs/_build/
|
75 |
+
|
76 |
+
# PyBuilder
|
77 |
+
.pybuilder/
|
78 |
+
target/
|
79 |
+
|
80 |
+
# Jupyter Notebook
|
81 |
+
.ipynb_checkpoints
|
82 |
+
|
83 |
+
# IPython
|
84 |
+
profile_default/
|
85 |
+
ipython_config.py
|
86 |
+
|
87 |
+
# pyenv
|
88 |
+
# For a library or package, you might want to ignore these files since the code is
|
89 |
+
# intended to run in multiple environments; otherwise, check them in:
|
90 |
+
# .python-version
|
91 |
+
|
92 |
+
# pipenv
|
93 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
94 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
95 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
96 |
+
# install all needed dependencies.
|
97 |
+
#Pipfile.lock
|
98 |
+
|
99 |
+
# poetry
|
100 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
101 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
102 |
+
# commonly ignored for libraries.
|
103 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
104 |
+
#poetry.lock
|
105 |
+
|
106 |
+
# pdm
|
107 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
108 |
+
#pdm.lock
|
109 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
110 |
+
# in version control.
|
111 |
+
# https://pdm.fming.dev/#use-with-ide
|
112 |
+
.pdm.toml
|
113 |
+
|
114 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
115 |
+
__pypackages__/
|
116 |
+
|
117 |
+
# Celery stuff
|
118 |
+
celerybeat-schedule
|
119 |
+
celerybeat.pid
|
120 |
+
|
121 |
+
# SageMath parsed files
|
122 |
+
*.sage.py
|
123 |
+
|
124 |
+
# Environments
|
125 |
+
.env
|
126 |
+
.venv
|
127 |
+
env/
|
128 |
+
venv/
|
129 |
+
ENV/
|
130 |
+
env.bak/
|
131 |
+
venv.bak/
|
132 |
+
|
133 |
+
# Spyder project settings
|
134 |
+
.spyderproject
|
135 |
+
.spyproject
|
136 |
+
|
137 |
+
# Rope project settings
|
138 |
+
.ropeproject
|
139 |
+
|
140 |
+
# mkdocs documentation
|
141 |
+
/site
|
142 |
+
|
143 |
+
# mypy
|
144 |
+
.mypy_cache/
|
145 |
+
.dmypy.json
|
146 |
+
dmypy.json
|
147 |
+
|
148 |
+
# Pyre type checker
|
149 |
+
.pyre/
|
150 |
+
|
151 |
+
# pytype static type analyzer
|
152 |
+
.pytype/
|
153 |
+
|
154 |
+
# Cython debug symbols
|
155 |
+
cython_debug/
|
156 |
+
|
157 |
+
# PyCharm
|
158 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
159 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
160 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
161 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
162 |
+
#.idea/
|
.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "unidiffuser"]
|
2 |
+
path = unidiffuser
|
3 |
+
url = https://github.com/thu-ml/unidiffuser
|
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
exclude: patch
|
2 |
+
repos:
|
3 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
4 |
+
rev: v4.2.0
|
5 |
+
hooks:
|
6 |
+
- id: check-executables-have-shebangs
|
7 |
+
- id: check-json
|
8 |
+
- id: check-merge-conflict
|
9 |
+
- id: check-shebang-scripts-are-executable
|
10 |
+
- id: check-toml
|
11 |
+
- id: check-yaml
|
12 |
+
- id: double-quote-string-fixer
|
13 |
+
- id: end-of-file-fixer
|
14 |
+
- id: mixed-line-ending
|
15 |
+
args: ['--fix=lf']
|
16 |
+
- id: requirements-txt-fixer
|
17 |
+
- id: trailing-whitespace
|
18 |
+
- repo: https://github.com/myint/docformatter
|
19 |
+
rev: v1.4
|
20 |
+
hooks:
|
21 |
+
- id: docformatter
|
22 |
+
args: ['--in-place']
|
23 |
+
- repo: https://github.com/pycqa/isort
|
24 |
+
rev: 5.12.0
|
25 |
+
hooks:
|
26 |
+
- id: isort
|
27 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
28 |
+
rev: v0.991
|
29 |
+
hooks:
|
30 |
+
- id: mypy
|
31 |
+
args: ['--ignore-missing-imports']
|
32 |
+
additional_dependencies: ['types-python-slugify']
|
33 |
+
- repo: https://github.com/google/yapf
|
34 |
+
rev: v0.32.0
|
35 |
+
hooks:
|
36 |
+
- id: yapf
|
37 |
+
args: ['--parallel', '--in-place']
|
.style.yapf
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[style]
|
2 |
+
based_on_style = pep8
|
3 |
+
blank_line_before_nested_class_or_def = false
|
4 |
+
spaces_before_comment = 2
|
5 |
+
split_before_logical_operator = true
|
Dockerfile
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM nvidia/cuda:11.7.1-cudnn8-devel-ubuntu22.04
|
2 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
3 |
+
RUN apt-get update && \
|
4 |
+
apt-get upgrade -y && \
|
5 |
+
apt-get install -y --no-install-recommends \
|
6 |
+
git \
|
7 |
+
git-lfs \
|
8 |
+
wget \
|
9 |
+
curl \
|
10 |
+
# python build dependencies \
|
11 |
+
build-essential \
|
12 |
+
libssl-dev \
|
13 |
+
zlib1g-dev \
|
14 |
+
libbz2-dev \
|
15 |
+
libreadline-dev \
|
16 |
+
libsqlite3-dev \
|
17 |
+
libncursesw5-dev \
|
18 |
+
xz-utils \
|
19 |
+
tk-dev \
|
20 |
+
libxml2-dev \
|
21 |
+
libxmlsec1-dev \
|
22 |
+
libffi-dev \
|
23 |
+
liblzma-dev && \
|
24 |
+
apt-get clean && \
|
25 |
+
rm -rf /var/lib/apt/lists/*
|
26 |
+
|
27 |
+
RUN useradd -m -u 1000 user
|
28 |
+
USER user
|
29 |
+
ENV HOME=/home/user \
|
30 |
+
PATH=/home/user/.local/bin:${PATH}
|
31 |
+
WORKDIR ${HOME}/app
|
32 |
+
|
33 |
+
RUN curl https://pyenv.run | bash
|
34 |
+
ENV PATH=${HOME}/.pyenv/shims:${HOME}/.pyenv/bin:${PATH}
|
35 |
+
ARG PYTHON_VERSION=3.10.10
|
36 |
+
RUN pyenv install ${PYTHON_VERSION} && \
|
37 |
+
pyenv global ${PYTHON_VERSION} && \
|
38 |
+
pyenv rehash && \
|
39 |
+
pip install --no-cache-dir -U pip setuptools wheel
|
40 |
+
|
41 |
+
RUN pip install --no-cache-dir -U torch==1.13.1 torchvision==0.14.1
|
42 |
+
COPY --chown=1000 requirements.txt /tmp/requirements.txt
|
43 |
+
RUN pip install --no-cache-dir -U -r /tmp/requirements.txt
|
44 |
+
|
45 |
+
COPY --chown=1000 . ${HOME}/app
|
46 |
+
ENV PYTHONPATH=${HOME}/app \
|
47 |
+
PYTHONUNBUFFERED=1 \
|
48 |
+
GRADIO_ALLOW_FLAGGING=never \
|
49 |
+
GRADIO_NUM_PORTS=1 \
|
50 |
+
GRADIO_SERVER_NAME=0.0.0.0 \
|
51 |
+
GRADIO_THEME=huggingface \
|
52 |
+
SYSTEM=spaces
|
53 |
+
CMD ["python", "app.py"]
|
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 😻
|
4 |
colorFrom: gray
|
5 |
colorTo: green
|
6 |
-
sdk:
|
7 |
-
sdk_version: 3.20.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: UniDiffuser
|
3 |
emoji: 😻
|
4 |
colorFrom: gray
|
5 |
colorTo: green
|
6 |
+
sdk: docker
|
|
|
7 |
app_file: app.py
|
8 |
pinned: false
|
9 |
+
license: other
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import os
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
from model import Model
|
10 |
+
|
11 |
+
DESCRIPTION = '# [UniDiffuser](https://github.com/thu-ml/unidiffuser)'
|
12 |
+
|
13 |
+
SPACE_ID = os.getenv('SPACE_ID')
|
14 |
+
if SPACE_ID is not None:
|
15 |
+
DESCRIPTION += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
|
16 |
+
|
17 |
+
model = Model()
|
18 |
+
|
19 |
+
|
20 |
+
def create_demo(mode_name: str) -> gr.Blocks:
|
21 |
+
with gr.Blocks() as demo:
|
22 |
+
with gr.Row():
|
23 |
+
with gr.Column():
|
24 |
+
mode = gr.Dropdown(label='Mode',
|
25 |
+
choices=[
|
26 |
+
't2i',
|
27 |
+
'i2t',
|
28 |
+
'joint',
|
29 |
+
'i',
|
30 |
+
't',
|
31 |
+
'i2ti2',
|
32 |
+
't2i2t',
|
33 |
+
],
|
34 |
+
value=mode_name,
|
35 |
+
visible=False)
|
36 |
+
prompt = gr.Text(label='Prompt',
|
37 |
+
max_lines=1,
|
38 |
+
visible=mode_name in ['t2i', 't2i2t'])
|
39 |
+
image = gr.Image(label='Input image',
|
40 |
+
type='filepath',
|
41 |
+
visible=mode_name in ['i2t', 'i2t2i'])
|
42 |
+
run_button = gr.Button('Run')
|
43 |
+
with gr.Accordion('Advanced options', open=False):
|
44 |
+
seed = gr.Slider(
|
45 |
+
label='Seed',
|
46 |
+
minimum=-1,
|
47 |
+
maximum=1000000,
|
48 |
+
step=1,
|
49 |
+
value=-1,
|
50 |
+
info=
|
51 |
+
'If set to -1, a different seed will be used each time.'
|
52 |
+
)
|
53 |
+
num_steps = gr.Slider(label='Steps',
|
54 |
+
minimum=1,
|
55 |
+
maximum=100,
|
56 |
+
value=50,
|
57 |
+
step=1)
|
58 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
59 |
+
minimum=0.1,
|
60 |
+
maximum=30.0,
|
61 |
+
value=7.0,
|
62 |
+
step=0.1)
|
63 |
+
with gr.Column():
|
64 |
+
result_image = gr.Image(label='Generated image',
|
65 |
+
visible=mode_name
|
66 |
+
in ['t2i', 'i', 'joint', 'i2t2i'])
|
67 |
+
result_text = gr.Text(label='Generated text',
|
68 |
+
visible=mode_name
|
69 |
+
in ['i2t', 't', 'joint', 't2i2t'])
|
70 |
+
inputs = [
|
71 |
+
mode,
|
72 |
+
prompt,
|
73 |
+
image,
|
74 |
+
seed,
|
75 |
+
num_steps,
|
76 |
+
guidance_scale,
|
77 |
+
]
|
78 |
+
outputs = [
|
79 |
+
result_image,
|
80 |
+
result_text,
|
81 |
+
]
|
82 |
+
|
83 |
+
prompt.submit(fn=model.run, inputs=inputs, outputs=outputs)
|
84 |
+
run_button.click(fn=model.run, inputs=inputs, outputs=outputs)
|
85 |
+
return demo
|
86 |
+
|
87 |
+
|
88 |
+
with gr.Blocks(css='style.css') as demo:
|
89 |
+
gr.Markdown(DESCRIPTION)
|
90 |
+
with gr.Tabs():
|
91 |
+
with gr.TabItem('text2image'):
|
92 |
+
create_demo('t2i')
|
93 |
+
with gr.TabItem('image2text'):
|
94 |
+
create_demo('i2t')
|
95 |
+
with gr.TabItem('image variation'):
|
96 |
+
create_demo('i2t2i')
|
97 |
+
with gr.TabItem('joint generation'):
|
98 |
+
create_demo('joint')
|
99 |
+
with gr.TabItem('image generation'):
|
100 |
+
create_demo('i')
|
101 |
+
with gr.TabItem('text generation'):
|
102 |
+
create_demo('t')
|
103 |
+
with gr.TabItem('text variation'):
|
104 |
+
create_demo('t2i2t')
|
105 |
+
demo.queue(api_open=False).launch()
|
model.py
ADDED
@@ -0,0 +1,515 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import pathlib
|
4 |
+
import random
|
5 |
+
import sys
|
6 |
+
from typing import Callable
|
7 |
+
|
8 |
+
import clip
|
9 |
+
import einops
|
10 |
+
import numpy as np
|
11 |
+
import PIL.Image
|
12 |
+
import torch
|
13 |
+
from huggingface_hub import snapshot_download
|
14 |
+
|
15 |
+
repo_dir = pathlib.Path(__file__).parent
|
16 |
+
submodule_dir = repo_dir / 'unidiffuser'
|
17 |
+
sys.path.append(submodule_dir.as_posix())
|
18 |
+
|
19 |
+
import utils
|
20 |
+
from configs.sample_unidiffuser_v1 import get_config
|
21 |
+
from dpm_solver_pp import DPM_Solver, NoiseScheduleVP
|
22 |
+
from libs.autoencoder import FrozenAutoencoderKL
|
23 |
+
from libs.autoencoder import get_model as get_autoencoder
|
24 |
+
from libs.caption_decoder import CaptionDecoder
|
25 |
+
from libs.clip import FrozenCLIPEmbedder
|
26 |
+
|
27 |
+
model_dir = repo_dir / 'models'
|
28 |
+
if not model_dir.exists():
|
29 |
+
snapshot_download('thu-ml/unidiffuser-v1',
|
30 |
+
repo_type='model',
|
31 |
+
local_dir=model_dir)
|
32 |
+
|
33 |
+
|
34 |
+
def stable_diffusion_beta_schedule(linear_start=0.00085,
|
35 |
+
linear_end=0.0120,
|
36 |
+
n_timestep=1000):
|
37 |
+
_betas = (torch.linspace(linear_start**0.5,
|
38 |
+
linear_end**0.5,
|
39 |
+
n_timestep,
|
40 |
+
dtype=torch.float64)**2)
|
41 |
+
return _betas.numpy()
|
42 |
+
|
43 |
+
|
44 |
+
class Model:
|
45 |
+
def __init__(self):
|
46 |
+
self.device = torch.device(
|
47 |
+
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
48 |
+
self.config = get_config()
|
49 |
+
|
50 |
+
self.nnet = self.load_model()
|
51 |
+
self.caption_decoder = CaptionDecoder(device=self.device,
|
52 |
+
**self.config.caption_decoder)
|
53 |
+
self.clip_text_model = self.load_clip_text_model()
|
54 |
+
self.autoencoder = self.load_autoencoder()
|
55 |
+
|
56 |
+
self.clip_img_model, self.clip_img_model_preprocess = clip.load(
|
57 |
+
'ViT-B/32', device=self.device, jit=False)
|
58 |
+
self.empty_context = self.clip_text_model.encode([''])[0]
|
59 |
+
|
60 |
+
self.betas = stable_diffusion_beta_schedule()
|
61 |
+
self.N = len(self.betas)
|
62 |
+
|
63 |
+
@property
|
64 |
+
def use_caption_decoder(self) -> bool:
|
65 |
+
return (self.config.text_dim < self.config.clip_text_dim
|
66 |
+
or self.config.mode != 't2i')
|
67 |
+
|
68 |
+
def load_model(self,
|
69 |
+
model_path: str = 'models/uvit_v1.pth') -> torch.nn.Module:
|
70 |
+
model = utils.get_nnet(**self.config.nnet)
|
71 |
+
model.load_state_dict(torch.load(model_path, map_location='cpu'))
|
72 |
+
model.to(self.device)
|
73 |
+
model.eval()
|
74 |
+
return model
|
75 |
+
|
76 |
+
def load_clip_text_model(self) -> FrozenCLIPEmbedder:
|
77 |
+
clip_text_model = FrozenCLIPEmbedder(device=self.device)
|
78 |
+
clip_text_model.to(self.device)
|
79 |
+
clip_text_model.eval()
|
80 |
+
return clip_text_model
|
81 |
+
|
82 |
+
def load_autoencoder(self) -> FrozenAutoencoderKL:
|
83 |
+
autoencoder = get_autoencoder(**self.config.autoencoder)
|
84 |
+
autoencoder.to(self.device)
|
85 |
+
return autoencoder
|
86 |
+
|
87 |
+
def split(self, x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
88 |
+
C, H, W = self.config.z_shape
|
89 |
+
z_dim = C * H * W
|
90 |
+
z, clip_img = x.split([z_dim, self.config.clip_img_dim], dim=1)
|
91 |
+
z = einops.rearrange(z, 'B (C H W) -> B C H W', C=C, H=H, W=W)
|
92 |
+
clip_img = einops.rearrange(clip_img,
|
93 |
+
'B (L D) -> B L D',
|
94 |
+
L=1,
|
95 |
+
D=self.config.clip_img_dim)
|
96 |
+
return z, clip_img
|
97 |
+
|
98 |
+
@staticmethod
|
99 |
+
def combine(z, clip_img):
|
100 |
+
z = einops.rearrange(z, 'B C H W -> B (C H W)')
|
101 |
+
clip_img = einops.rearrange(clip_img, 'B L D -> B (L D)')
|
102 |
+
return torch.concat([z, clip_img], dim=-1)
|
103 |
+
|
104 |
+
def t2i_nnet(
|
105 |
+
self, x, timesteps, text
|
106 |
+
): # text is the low dimension version of the text clip embedding
|
107 |
+
"""
|
108 |
+
1. calculate the conditional model output
|
109 |
+
2. calculate unconditional model output
|
110 |
+
config.sample.t2i_cfg_mode == 'empty_token': using the original cfg with the empty string
|
111 |
+
config.sample.t2i_cfg_mode == 'true_uncond: using the unconditional model learned by our method
|
112 |
+
3. return linear combination of conditional output and unconditional output
|
113 |
+
"""
|
114 |
+
z, clip_img = self.split(x)
|
115 |
+
|
116 |
+
t_text = torch.zeros(timesteps.size(0),
|
117 |
+
dtype=torch.int,
|
118 |
+
device=self.device)
|
119 |
+
|
120 |
+
z_out, clip_img_out, text_out = self.nnet(
|
121 |
+
z,
|
122 |
+
clip_img,
|
123 |
+
text=text,
|
124 |
+
t_img=timesteps,
|
125 |
+
t_text=t_text,
|
126 |
+
data_type=torch.zeros_like(
|
127 |
+
t_text, device=self.device, dtype=torch.int) +
|
128 |
+
self.config.data_type)
|
129 |
+
x_out = self.combine(z_out, clip_img_out)
|
130 |
+
|
131 |
+
if self.config.sample.scale == 0.:
|
132 |
+
return x_out
|
133 |
+
|
134 |
+
if self.config.sample.t2i_cfg_mode == 'empty_token':
|
135 |
+
_empty_context = einops.repeat(self.empty_context,
|
136 |
+
'L D -> B L D',
|
137 |
+
B=x.size(0))
|
138 |
+
if self.use_caption_decoder:
|
139 |
+
_empty_context = self.caption_decoder.encode_prefix(
|
140 |
+
_empty_context)
|
141 |
+
z_out_uncond, clip_img_out_uncond, text_out_uncond = self.nnet(
|
142 |
+
z,
|
143 |
+
clip_img,
|
144 |
+
text=_empty_context,
|
145 |
+
t_img=timesteps,
|
146 |
+
t_text=t_text,
|
147 |
+
data_type=torch.zeros_like(
|
148 |
+
t_text, device=self.device, dtype=torch.int) +
|
149 |
+
self.config.data_type)
|
150 |
+
x_out_uncond = self.combine(z_out_uncond, clip_img_out_uncond)
|
151 |
+
elif self.config.sample.t2i_cfg_mode == 'true_uncond':
|
152 |
+
text_N = torch.randn_like(text) # 3 other possible choices
|
153 |
+
z_out_uncond, clip_img_out_uncond, text_out_uncond = self.nnet(
|
154 |
+
z,
|
155 |
+
clip_img,
|
156 |
+
text=text_N,
|
157 |
+
t_img=timesteps,
|
158 |
+
t_text=torch.ones_like(timesteps) * self.N,
|
159 |
+
data_type=torch.zeros_like(
|
160 |
+
t_text, device=self.device, dtype=torch.int) +
|
161 |
+
self.config.data_type)
|
162 |
+
x_out_uncond = self.combine(z_out_uncond, clip_img_out_uncond)
|
163 |
+
else:
|
164 |
+
raise NotImplementedError
|
165 |
+
|
166 |
+
return x_out + self.config.sample.scale * (x_out - x_out_uncond)
|
167 |
+
|
168 |
+
def i_nnet(self, x, timesteps):
|
169 |
+
z, clip_img = self.split(x)
|
170 |
+
text = torch.randn(x.size(0),
|
171 |
+
77,
|
172 |
+
self.config.text_dim,
|
173 |
+
device=self.device)
|
174 |
+
t_text = torch.ones_like(timesteps) * self.N
|
175 |
+
z_out, clip_img_out, text_out = self.nnet(
|
176 |
+
z,
|
177 |
+
clip_img,
|
178 |
+
text=text,
|
179 |
+
t_img=timesteps,
|
180 |
+
t_text=t_text,
|
181 |
+
data_type=torch.zeros_like(
|
182 |
+
t_text, device=self.device, dtype=torch.int) +
|
183 |
+
self.config.data_type)
|
184 |
+
x_out = self.combine(z_out, clip_img_out)
|
185 |
+
return x_out
|
186 |
+
|
187 |
+
def t_nnet(self, x, timesteps):
|
188 |
+
z = torch.randn(x.size(0), *self.config.z_shape, device=self.device)
|
189 |
+
clip_img = torch.randn(x.size(0),
|
190 |
+
1,
|
191 |
+
self.config.clip_img_dim,
|
192 |
+
device=self.device)
|
193 |
+
z_out, clip_img_out, text_out = self.nnet(
|
194 |
+
z,
|
195 |
+
clip_img,
|
196 |
+
text=x,
|
197 |
+
t_img=torch.ones_like(timesteps) * self.N,
|
198 |
+
t_text=timesteps,
|
199 |
+
data_type=torch.zeros_like(
|
200 |
+
timesteps, device=self.device, dtype=torch.int) +
|
201 |
+
self.config.data_type)
|
202 |
+
return text_out
|
203 |
+
|
204 |
+
def i2t_nnet(self, x, timesteps, z, clip_img):
|
205 |
+
"""
|
206 |
+
1. calculate the conditional model output
|
207 |
+
2. calculate unconditional model output
|
208 |
+
3. return linear combination of conditional output and unconditional output
|
209 |
+
"""
|
210 |
+
t_img = torch.zeros(timesteps.size(0),
|
211 |
+
dtype=torch.int,
|
212 |
+
device=self.device)
|
213 |
+
|
214 |
+
z_out, clip_img_out, text_out = self.nnet(
|
215 |
+
z,
|
216 |
+
clip_img,
|
217 |
+
text=x,
|
218 |
+
t_img=t_img,
|
219 |
+
t_text=timesteps,
|
220 |
+
data_type=torch.zeros_like(
|
221 |
+
t_img, device=self.device, dtype=torch.int) +
|
222 |
+
self.config.data_type)
|
223 |
+
|
224 |
+
if self.config.sample.scale == 0.:
|
225 |
+
return text_out
|
226 |
+
|
227 |
+
z_N = torch.randn_like(z) # 3 other possible choices
|
228 |
+
clip_img_N = torch.randn_like(clip_img)
|
229 |
+
z_out_uncond, clip_img_out_uncond, text_out_uncond = self.nnet(
|
230 |
+
z_N,
|
231 |
+
clip_img_N,
|
232 |
+
text=x,
|
233 |
+
t_img=torch.ones_like(timesteps) * self.N,
|
234 |
+
t_text=timesteps,
|
235 |
+
data_type=torch.zeros_like(
|
236 |
+
timesteps, device=self.device, dtype=torch.int) +
|
237 |
+
self.config.data_type)
|
238 |
+
|
239 |
+
return text_out + self.config.sample.scale * (text_out -
|
240 |
+
text_out_uncond)
|
241 |
+
|
242 |
+
def split_joint(self, x):
|
243 |
+
C, H, W = self.config.z_shape
|
244 |
+
z_dim = C * H * W
|
245 |
+
z, clip_img, text = x.split(
|
246 |
+
[z_dim, self.config.clip_img_dim, 77 * self.config.text_dim],
|
247 |
+
dim=1)
|
248 |
+
z = einops.rearrange(z, 'B (C H W) -> B C H W', C=C, H=H, W=W)
|
249 |
+
clip_img = einops.rearrange(clip_img,
|
250 |
+
'B (L D) -> B L D',
|
251 |
+
L=1,
|
252 |
+
D=self.config.clip_img_dim)
|
253 |
+
text = einops.rearrange(text,
|
254 |
+
'B (L D) -> B L D',
|
255 |
+
L=77,
|
256 |
+
D=self.config.text_dim)
|
257 |
+
return z, clip_img, text
|
258 |
+
|
259 |
+
@staticmethod
|
260 |
+
def combine_joint(z: torch.Tensor, clip_img: torch.Tensor,
|
261 |
+
text: torch.Tensor) -> torch.Tensor:
|
262 |
+
z = einops.rearrange(z, 'B C H W -> B (C H W)')
|
263 |
+
clip_img = einops.rearrange(clip_img, 'B L D -> B (L D)')
|
264 |
+
text = einops.rearrange(text, 'B L D -> B (L D)')
|
265 |
+
return torch.concat([z, clip_img, text], dim=-1)
|
266 |
+
|
267 |
+
def joint_nnet(self, x, timesteps):
|
268 |
+
z, clip_img, text = self.split_joint(x)
|
269 |
+
z_out, clip_img_out, text_out = self.nnet(
|
270 |
+
z,
|
271 |
+
clip_img,
|
272 |
+
text=text,
|
273 |
+
t_img=timesteps,
|
274 |
+
t_text=timesteps,
|
275 |
+
data_type=torch.zeros_like(
|
276 |
+
timesteps, device=self.device, dtype=torch.int) +
|
277 |
+
self.config.data_type)
|
278 |
+
x_out = self.combine_joint(z_out, clip_img_out, text_out)
|
279 |
+
|
280 |
+
if self.config.sample.scale == 0.:
|
281 |
+
return x_out
|
282 |
+
|
283 |
+
z_noise = torch.randn(x.size(0),
|
284 |
+
*self.config.z_shape,
|
285 |
+
device=self.device)
|
286 |
+
clip_img_noise = torch.randn(x.size(0),
|
287 |
+
1,
|
288 |
+
self.config.clip_img_dim,
|
289 |
+
device=self.device)
|
290 |
+
text_noise = torch.randn(x.size(0),
|
291 |
+
77,
|
292 |
+
self.config.text_dim,
|
293 |
+
device=self.device)
|
294 |
+
|
295 |
+
_, _, text_out_uncond = self.nnet(
|
296 |
+
z_noise,
|
297 |
+
clip_img_noise,
|
298 |
+
text=text,
|
299 |
+
t_img=torch.ones_like(timesteps) * self.N,
|
300 |
+
t_text=timesteps,
|
301 |
+
data_type=torch.zeros_like(
|
302 |
+
timesteps, device=self.device, dtype=torch.int) +
|
303 |
+
self.config.data_type)
|
304 |
+
z_out_uncond, clip_img_out_uncond, _ = self.nnet(
|
305 |
+
z,
|
306 |
+
clip_img,
|
307 |
+
text=text_noise,
|
308 |
+
t_img=timesteps,
|
309 |
+
t_text=torch.ones_like(timesteps) * self.N,
|
310 |
+
data_type=torch.zeros_like(
|
311 |
+
timesteps, device=self.device, dtype=torch.int) +
|
312 |
+
self.config.data_type)
|
313 |
+
|
314 |
+
x_out_uncond = self.combine_joint(z_out_uncond, clip_img_out_uncond,
|
315 |
+
text_out_uncond)
|
316 |
+
|
317 |
+
return x_out + self.config.sample.scale * (x_out - x_out_uncond)
|
318 |
+
|
319 |
+
@torch.cuda.amp.autocast()
|
320 |
+
def encode(self, _batch):
|
321 |
+
return self.autoencoder.encode(_batch)
|
322 |
+
|
323 |
+
@torch.cuda.amp.autocast()
|
324 |
+
def decode(self, _batch):
|
325 |
+
return self.autoencoder.decode(_batch)
|
326 |
+
|
327 |
+
def prepare_contexts(
|
328 |
+
self) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
329 |
+
resolution = self.config.z_shape[-1] * 8
|
330 |
+
|
331 |
+
contexts = torch.randn(self.config.n_samples, 77,
|
332 |
+
self.config.clip_text_dim).to(self.device)
|
333 |
+
img_contexts = torch.randn(self.config.n_samples,
|
334 |
+
2 * self.config.z_shape[0],
|
335 |
+
self.config.z_shape[1],
|
336 |
+
self.config.z_shape[2])
|
337 |
+
clip_imgs = torch.randn(self.config.n_samples, 1,
|
338 |
+
self.config.clip_img_dim)
|
339 |
+
|
340 |
+
if self.config.mode in ['t2i', 't2i2t']:
|
341 |
+
prompts = [self.config.prompt] * self.config.n_samples
|
342 |
+
contexts = self.clip_text_model.encode(prompts)
|
343 |
+
|
344 |
+
elif self.config.mode in ['i2t', 'i2t2i']:
|
345 |
+
img_contexts = []
|
346 |
+
clip_imgs = []
|
347 |
+
|
348 |
+
def get_img_feature(image):
|
349 |
+
image = np.array(image).astype(np.uint8)
|
350 |
+
image = utils.center_crop(resolution, resolution, image)
|
351 |
+
clip_img_feature = self.clip_img_model.encode_image(
|
352 |
+
self.clip_img_model_preprocess(
|
353 |
+
PIL.Image.fromarray(image)).unsqueeze(0).to(
|
354 |
+
self.device))
|
355 |
+
|
356 |
+
image = (image / 127.5 - 1.0).astype(np.float32)
|
357 |
+
image = einops.rearrange(image, 'h w c -> 1 c h w')
|
358 |
+
image = torch.tensor(image, device=self.device)
|
359 |
+
moments = self.autoencoder.encode_moments(image)
|
360 |
+
|
361 |
+
return clip_img_feature, moments
|
362 |
+
|
363 |
+
image = PIL.Image.open(self.config.img).convert('RGB')
|
364 |
+
clip_img, img_context = get_img_feature(image)
|
365 |
+
|
366 |
+
img_contexts.append(img_context)
|
367 |
+
clip_imgs.append(clip_img)
|
368 |
+
img_contexts = img_contexts * self.config.n_samples
|
369 |
+
clip_imgs = clip_imgs * self.config.n_samples
|
370 |
+
|
371 |
+
img_contexts = torch.concat(img_contexts, dim=0)
|
372 |
+
clip_imgs = torch.stack(clip_imgs, dim=0)
|
373 |
+
|
374 |
+
return contexts, img_contexts, clip_imgs
|
375 |
+
|
376 |
+
@staticmethod
|
377 |
+
def unpreprocess(v: torch.Tensor) -> torch.Tensor: # to B C H W and [0, 1]
|
378 |
+
v = 0.5 * (v + 1.)
|
379 |
+
v.clamp_(0., 1.)
|
380 |
+
return v
|
381 |
+
|
382 |
+
def get_sample_fn(self, _n_samples: int) -> Callable:
|
383 |
+
def sample_fn(mode: str, **kwargs):
|
384 |
+
_z_init = torch.randn(_n_samples,
|
385 |
+
*self.config.z_shape,
|
386 |
+
device=self.device)
|
387 |
+
_clip_img_init = torch.randn(_n_samples,
|
388 |
+
1,
|
389 |
+
self.config.clip_img_dim,
|
390 |
+
device=self.device)
|
391 |
+
_text_init = torch.randn(_n_samples,
|
392 |
+
77,
|
393 |
+
self.config.text_dim,
|
394 |
+
device=self.device)
|
395 |
+
if mode == 'joint':
|
396 |
+
_x_init = self.combine_joint(_z_init, _clip_img_init,
|
397 |
+
_text_init)
|
398 |
+
elif mode in ['t2i', 'i']:
|
399 |
+
_x_init = self.combine(_z_init, _clip_img_init)
|
400 |
+
elif mode in ['i2t', 't']:
|
401 |
+
_x_init = _text_init
|
402 |
+
noise_schedule = NoiseScheduleVP(schedule='discrete',
|
403 |
+
betas=torch.tensor(
|
404 |
+
self.betas,
|
405 |
+
device=self.device).float())
|
406 |
+
|
407 |
+
def model_fn(x, t_continuous):
|
408 |
+
t = t_continuous * self.N
|
409 |
+
if mode == 'joint':
|
410 |
+
return self.joint_nnet(x, t)
|
411 |
+
elif mode == 't2i':
|
412 |
+
return self.t2i_nnet(x, t, **kwargs)
|
413 |
+
elif mode == 'i2t':
|
414 |
+
return self.i2t_nnet(x, t, **kwargs)
|
415 |
+
elif mode == 'i':
|
416 |
+
return self.i_nnet(x, t)
|
417 |
+
elif mode == 't':
|
418 |
+
return self.t_nnet(x, t)
|
419 |
+
|
420 |
+
dpm_solver = DPM_Solver(model_fn,
|
421 |
+
noise_schedule,
|
422 |
+
predict_x0=True,
|
423 |
+
thresholding=False)
|
424 |
+
with torch.inference_mode(), torch.autocast(
|
425 |
+
device_type=self.device.type):
|
426 |
+
x = dpm_solver.sample(_x_init,
|
427 |
+
steps=self.config.sample.sample_steps,
|
428 |
+
eps=1. / self.N,
|
429 |
+
T=1.)
|
430 |
+
|
431 |
+
if mode == 'joint':
|
432 |
+
_z, _clip_img, _text = self.split_joint(x)
|
433 |
+
return _z, _clip_img, _text
|
434 |
+
elif mode in ['t2i', 'i']:
|
435 |
+
_z, _clip_img = self.split(x)
|
436 |
+
return _z, _clip_img
|
437 |
+
elif mode in ['i2t', 't']:
|
438 |
+
return x
|
439 |
+
|
440 |
+
return sample_fn
|
441 |
+
|
442 |
+
@staticmethod
|
443 |
+
def to_pil(tensor: torch.Tensor) -> PIL.Image.Image:
|
444 |
+
return PIL.Image.fromarray(
|
445 |
+
tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to(
|
446 |
+
'cpu', torch.uint8).numpy())
|
447 |
+
|
448 |
+
def run(self, mode: str, prompt: str, image_path: str, seed: int,
|
449 |
+
num_steps: int,
|
450 |
+
guidance_scale: float) -> tuple[PIL.Image.Image | None, str]:
|
451 |
+
self.config.mode = mode
|
452 |
+
self.config.prompt = prompt
|
453 |
+
self.config.img = image_path
|
454 |
+
self.config.seed = seed
|
455 |
+
self.config.sample.sample_steps = num_steps
|
456 |
+
self.config.sample.scale = guidance_scale
|
457 |
+
self.config.n_samples = 1
|
458 |
+
|
459 |
+
#set_seed(self.config.seed)
|
460 |
+
if seed == -1:
|
461 |
+
seed = random.randint(0, 1000000)
|
462 |
+
torch.manual_seed(seed)
|
463 |
+
|
464 |
+
contexts, img_contexts, clip_imgs = self.prepare_contexts()
|
465 |
+
if self.use_caption_decoder:
|
466 |
+
contexts_low_dim = self.caption_decoder.encode_prefix(contexts)
|
467 |
+
else:
|
468 |
+
contexts_low_dim = contexts
|
469 |
+
z_img = self.autoencoder.sample(img_contexts)
|
470 |
+
|
471 |
+
if self.config.mode in ['t2i', 't2i2t']:
|
472 |
+
_n_samples = contexts_low_dim.size(0)
|
473 |
+
elif self.config.mode in ['i2t', 'i2t2i']:
|
474 |
+
_n_samples = img_contexts.size(0)
|
475 |
+
else:
|
476 |
+
_n_samples = self.config.n_samples
|
477 |
+
sample_fn = self.get_sample_fn(_n_samples)
|
478 |
+
|
479 |
+
if self.config.mode == 'joint':
|
480 |
+
_z, _clip_img, _text = sample_fn(self.config.mode)
|
481 |
+
samples = self.unpreprocess(self.decode(_z))
|
482 |
+
samples = [self.to_pil(tensor) for tensor in samples]
|
483 |
+
prompts = self.caption_decoder.generate_captions(_text)
|
484 |
+
return samples[0], prompts[0]
|
485 |
+
|
486 |
+
elif self.config.mode in ['t2i', 'i', 'i2t2i']:
|
487 |
+
if self.config.mode == 't2i':
|
488 |
+
_z, _clip_img = sample_fn(
|
489 |
+
self.config.mode,
|
490 |
+
text=contexts_low_dim) # conditioned on the text embedding
|
491 |
+
elif self.config.mode == 'i':
|
492 |
+
_z, _clip_img = sample_fn(self.config.mode)
|
493 |
+
elif self.config.mode == 'i2t2i':
|
494 |
+
_text = sample_fn(
|
495 |
+
'i2t', z=z_img,
|
496 |
+
clip_img=clip_imgs) # conditioned on the image embedding
|
497 |
+
_z, _clip_img = sample_fn('t2i', text=_text)
|
498 |
+
samples = self.unpreprocess(self.decode(_z))
|
499 |
+
samples = [self.to_pil(tensor) for tensor in samples]
|
500 |
+
return samples[0], ''
|
501 |
+
|
502 |
+
elif self.config.mode in ['i2t', 't', 't2i2t']:
|
503 |
+
if self.config.mode == 'i2t':
|
504 |
+
_text = sample_fn(
|
505 |
+
self.config.mode, z=z_img,
|
506 |
+
clip_img=clip_imgs) # conditioned on the image embedding
|
507 |
+
elif self.config.mode == 't':
|
508 |
+
_text = sample_fn(self.config.mode)
|
509 |
+
elif self.config.mode == 't2i2t':
|
510 |
+
_z, _clip_img = sample_fn('t2i', text=contexts_low_dim)
|
511 |
+
_text = sample_fn('i2t', z=_z, clip_img=_clip_img)
|
512 |
+
prompts = self.caption_decoder.generate_captions(_text)
|
513 |
+
return None, prompts[0]
|
514 |
+
else:
|
515 |
+
raise ValueError
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==1.4.0
|
2 |
+
accelerate==0.12.0
|
3 |
+
einops==0.6.0
|
4 |
+
ftfy==6.1.1
|
5 |
+
git+https://github.com/openai/CLIP.git@a9b1bf5
|
6 |
+
gradio==3.21.0
|
7 |
+
huggingface-hub==0.13.2
|
8 |
+
ml-collections==0.1.1
|
9 |
+
torch==1.13.1
|
10 |
+
torchvision==0.14.1
|
11 |
+
transformers==4.23.1
|
12 |
+
triton==2.0.0
|
13 |
+
xformers==0.0.16
|
style.css
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
h1 {
|
2 |
+
text-align: center;
|
3 |
+
}
|
unidiffuser
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit 390368777ce0a6102f50361ab6dae8e0991447a8
|