File size: 9,903 Bytes
be13417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
'''
 * Copyright (c) 2023, salesforce.com, inc.
 * All rights reserved.
 * SPDX-License-Identifier: BSD-3-Clause
 * For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
 * By Le Xue
'''
## FROM: https://github.com/salesforce/ULIP
## TODO: Convert to LAVIS format. Currently only supports functionality for XInstructBLIP

# Modified from github.com/openai/CLIP
from collections import OrderedDict

import timm
from torch import nn
from lavis.models.ulip_models import losses
from torch.nn.parameter import Parameter
from easydict import EasyDict
import torch
import numpy as np
from lavis.common.dist_utils import download_cached_file


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""

    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        ret = super().forward(x.type(torch.float32))
        return ret.type(orig_type)


class QuickGELU(nn.Module):
    def forward(self, x: torch.Tensor):
        return x * torch.sigmoid(1.702 * x)


class ResidualAttentionBlock(nn.Module):
    def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
        super().__init__()

        self.attn = nn.MultiheadAttention(d_model, n_head)
        self.ln_1 = LayerNorm(d_model)
        self.mlp = nn.Sequential(OrderedDict([
            ("c_fc", nn.Linear(d_model, d_model * 4)),
            ("gelu", QuickGELU()),
            ("c_proj", nn.Linear(d_model * 4, d_model))
        ]))
        self.ln_2 = LayerNorm(d_model)
        self.attn_mask = attn_mask

    def attention(self, x: torch.Tensor):
        self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
        return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]

    def forward(self, x: torch.Tensor):
        x = x + self.attention(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x


class Transformer(nn.Module):
    def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
        super().__init__()
        self.width = width
        self.layers = layers
        self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])

    def forward(self, x: torch.Tensor):
        return self.resblocks(x)


class ULIP_WITH_IMAGE(nn.Module):
    def __init__(self, point_encoder, **kwargs):
        # super().__init__(ssl_mlp_dim, ssl_emb_dim, **kwargs)
        super().__init__()
        kwargs = EasyDict(kwargs)
        self.context_length = kwargs.context_length
        self.vision_width = kwargs.vision_width
        self.visual = kwargs.vision_model
        self.num_features = kwargs.embed_dim

        self.transformer = Transformer(
            width=kwargs.transformer_width,
            layers=kwargs.transformer_layers,
            heads=kwargs.transformer_heads,
            attn_mask=self.build_attention_mask(),
        )

        self.vocab_size = kwargs.vocab_size
        self.token_embedding = nn.Embedding(kwargs.vocab_size, kwargs.transformer_width)
        self.positional_embedding = nn.Parameter(torch.empty(self.context_length, kwargs.transformer_width))
        self.ln_final = LayerNorm(kwargs.transformer_width)

        self.image_projection = nn.Parameter(torch.empty(kwargs.vision_width, kwargs.embed_dim))
        self.text_projection = nn.Parameter(torch.empty(kwargs.transformer_width, kwargs.embed_dim))
        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))

        self.initialize_parameters()

        self.point_encoder = point_encoder

        self.pc_projection = nn.Parameter(torch.empty(kwargs.pc_feat_dims, kwargs.embed_dim ))
        nn.init.normal_(self.pc_projection, std= kwargs.embed_dim  ** -0.5)

    def encode_image(self, image):
        x = self.visual(image)
        x = x @ self.image_projection

        return x

    def encode_text(self, text):
        x = self.token_embedding(text)  # [batch_size, n_ctx, d_model]
        x = x + self.positional_embedding
        x = x.permute(1, 0, 2)  # NLD -> LND
        x = self.transformer(x)
        x = x.permute(1, 0, 2)  # LND -> NLD
        x = self.ln_final(x)

        # take features from the eot embedding (eot_token is the highest number in each sequence)
        x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection

        return x

    def build_attention_mask(self):
        # lazily create causal attention mask, with full attention between the vision tokens
        # pytorch uses additive attention mask; fill with -inf
        mask = torch.empty(self.context_length, self.context_length)
        mask.fill_(float("-inf"))
        mask.triu_(1)  # zero out the lower diagonal
        return mask

    def initialize_parameters(self):
        nn.init.normal_(self.token_embedding.weight, std=0.02)
        nn.init.normal_(self.positional_embedding, std=0.01)

        proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
        attn_std = self.transformer.width ** -0.5
        fc_std = (2 * self.transformer.width) ** -0.5
        for block in self.transformer.resblocks:
            nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
            nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
            nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
            nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)

        nn.init.normal_(self.image_projection, std=self.vision_width ** -0.5)
        nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)

    def encode_pc(self, pc):
        pc_feat = self.point_encoder(pc)
        pc_embed = pc_feat @ self.pc_projection
        return pc_embed

    def forward(self, pc, text=None, image=None):

        if text is not None:
            text_embed_all = []
            for i in range(text.shape[0]):
                text_for_one_sample = text[i]
                text_embed = self.encode_text(text_for_one_sample)
                text_embed = text_embed / text_embed.norm(dim=-1, keepdim=True)
                text_embed = text_embed.mean(dim=0)
                text_embed = text_embed / text_embed.norm(dim=-1, keepdim=True)
                text_embed_all.append(text_embed)

            text_embed_all = torch.stack(text_embed_all)
        else: 
            text_embed_all = None

        pc_embed = self.encode_pc(pc)
        if image is not None:
            image_embed = self.encode_image(image)
        else:
            image_embed = None
        
        res = {'text_embed': text_embed_all,
                'pc_embed': pc_embed,
                'image_embed': image_embed,
                'logit_scale': self.logit_scale.exp()
                }
        return pc_embed


def get_loss(args):
    return losses.ULIPWithImageLoss()


def get_metric_names(model):
    return ['loss', 'ulip_loss', 'ulip_pc_image_acc', 'ulip_pc_text_acc']

def ULIP_PointBERT(ulip_v=2):
    vision_model = timm.create_model('vit_base_patch16_224', num_classes=0)

    # =====================================================================
    # import the 3D backbone and specify the output point cloud feature dimension
    from lavis.models.ulip_models.pointbert.point_encoder import PointTransformer
    from lavis.models.ulip_models.utils.config import cfg_from_yaml_file
    ## TODO: parse as config
    # config_addr = '/export/home/LAVIS/lavis/models/ulip_models/pointbert/PointTransformer_8192point.yaml'
    url = "https://raw.githubusercontent.com/salesforce/ULIP/48d8d00b1cdb2aee79005817a202816f1c521911/models/pointbert/PointTransformer_8192point.yaml"
    config_addr = download_cached_file(
        url, check_hash=False, progress=True
    )
    config = cfg_from_yaml_file(config_addr)
    pc_feat_dims = 768 
    if ulip_v == "ulip2_scaledup":
        config.model.depth = 18
        transformer_layers = 18
        embed_dim=1280
    else:
        embed_dim=512

        transformer_layers = 12
    point_encoder = PointTransformer(config.model)
    # =====================================================================
    model = ULIP_WITH_IMAGE(embed_dim=embed_dim, vision_width=pc_feat_dims, point_encoder=point_encoder, vision_model=vision_model,
                            context_length=77, vocab_size=49408,
                            transformer_width=512, transformer_heads=8, transformer_layers=transformer_layers, pc_feat_dims=pc_feat_dims)
                            
    ## TODO: setup config
    if ulip_v == 2:
        cached_file = '/export/share/lxue/shared_models/ULIP-2/objaverse_shapenet_k_5/ULIP-2_pointbert_last.pt'
    elif ulip_v == 1:
        cached_file = '/export/share/lxue/shared_models/ULIP-1/objaverse/ULIP-1_pointbert_last.pt'
    elif ulip_v == 'shapenet':
        cached_file = '/export/share/lxue/shared_models/ULIP-1/objaverse_shapenet/checkpoint_last.pt'
    elif ulip_v == 'objaverse_k_1':
        cached_file = '/export/share/lxue/shared_models/ULIP-2/objaverse_k_1/checkpoint_last.pt'
    elif ulip_v == 'objaverse_shapenet_k_1':
        cached_file = '/export/share/lxue/shared_models/ULIP-2/objaverse_shapenet_k_1/checkpoint_last.pt'
    elif ulip_v == "ulip2_scaledup":
        cached_file = "/export/share/lxue/shared_models/ULIP-2/objaverse_shapenet_k_1_scaled_up/checkpoint_last.pt"
    # url = "https://storage.cloud.google.com/sfr-ulip-code-release-research/pretrained_models/ckpt_zero-sho_classification/checkpoint_pointbert.pt"
    # cached_file = download_cached_file(
    #     url, check_hash=False, progress=True
    # )
    ckpt = torch.load(cached_file, map_location='cpu')
    state_dict = OrderedDict()
    for k, v in ckpt['state_dict'].items():
        state_dict[k.replace('module.', '')] = v
    # model.cuda()
    model.load_state_dict(state_dict, strict=False)
    return model