File size: 9,297 Bytes
be13417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""

"""
Adapted from ULIP codebase: https://github.com/salesforce/ULIP
"""

from lavis.common.registry import registry
from lavis.processors.blip_processors import BlipImageBaseProcessor
from omegaconf import OmegaConf
import torchvision.transforms as transforms
from lavis.models.ulip_models.utils.io import IO

import numpy as np
from PIL import Image
import torch


def pc_norm(pc):
    """ pc: NxC, return NxC """
    centroid = np.mean(pc, axis=0)
    pc = pc - centroid
    m = np.max(np.sqrt(np.sum(pc ** 2, axis=1)))
    pc = pc / m
    return pc

def random_sample(permutation, pc, num):
    np.random.shuffle(permutation)
    pc = pc[permutation[:num]]
    return pc

def pil_loader(path):
    # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
    with open(path, 'rb') as f:
        img = Image.open(f)
        return img.convert('RGB')

def pc_normalize(pc):
    centroid = np.mean(pc, axis=0)
    pc = pc - centroid
    m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
    pc = pc / m
    return pc

def farthest_point_sample(point, npoint):
    """
    Input:
        xyz: pointcloud data, [N, D]
        npoint: number of samples
    Return:
        centroids: sampled pointcloud index, [npoint, D]
    """
    N, D = point.shape
    xyz = point[:,:3]
    centroids = np.zeros((npoint,))
    distance = np.ones((N,)) * 1e10
    farthest = np.random.randint(0, N)
    for i in range(npoint):
        centroids[i] = farthest
        centroid = xyz[farthest, :]
        dist = np.sum((xyz - centroid) ** 2, -1)
        mask = dist < distance
        distance[mask] = dist[mask]
        farthest = np.argmax(distance, -1)
    point = point[centroids.astype(np.int32)]
    return point

def rotate_point_cloud(batch_data):
    """ Randomly rotate the point clouds to augument the dataset
        rotation is per shape based along up direction
        Input:
          BxNx3 array, original batch of point clouds
        Return:
          BxNx3 array, rotated batch of point clouds
    """
    rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
    for k in range(batch_data.shape[0]):
        rotation_angle = np.random.uniform() * 2 * np.pi
        cosval = np.cos(rotation_angle)
        sinval = np.sin(rotation_angle)
        rotation_matrix = np.array([[cosval, 0, sinval],
                                    [0, 1, 0],
                                    [-sinval, 0, cosval]])
        shape_pc = batch_data[k, ...]
        rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
    return rotated_data

def random_point_dropout(batch_pc, max_dropout_ratio=0.875):
    ''' batch_pc: BxNx3 '''
    for b in range(batch_pc.shape[0]):
        dropout_ratio =  np.random.random()*max_dropout_ratio # 0~0.875
        drop_idx = np.where(np.random.random((batch_pc.shape[1]))<=dropout_ratio)[0]
        if len(drop_idx)>0:
            batch_pc[b,drop_idx,:] = batch_pc[b,0,:] # set to the first point
    return batch_pc

def random_scale_point_cloud(batch_data, scale_low=0.8, scale_high=1.25):
    """ Randomly scale the point cloud. Scale is per point cloud.
        Input:
            BxNx3 array, original batch of point clouds
        Return:
            BxNx3 array, scaled batch of point clouds
    """
    B, N, C = batch_data.shape
    scales = np.random.uniform(scale_low, scale_high, B)
    for batch_index in range(B):
        batch_data[batch_index,:,:] *= scales[batch_index]
    return batch_data

def shift_point_cloud(batch_data, shift_range=0.1):
    """ Randomly shift point cloud. Shift is per point cloud.
        Input:
          BxNx3 array, original batch of point clouds
        Return:
          BxNx3 array, shifted batch of point clouds
    """
    B, N, C = batch_data.shape
    shifts = np.random.uniform(-shift_range, shift_range, (B,3))
    for batch_index in range(B):
        batch_data[batch_index,:,:] += shifts[batch_index,:]
    return batch_data

def jitter_point_cloud(batch_data, sigma=0.01, clip=0.05):
    """ Randomly jitter points. jittering is per point.
        Input:
          BxNx3 array, original batch of point clouds
        Return:
          BxNx3 array, jittered batch of point clouds
    """
    B, N, C = batch_data.shape
    assert(clip > 0)
    jittered_data = np.clip(sigma * np.random.randn(B, N, C), -1*clip, clip)
    jittered_data += batch_data
    return jittered_data

def rotate_perturbation_point_cloud(batch_data, angle_sigma=0.06, angle_clip=0.18):
    """ Randomly perturb the point clouds by small rotations
        Input:
          BxNx3 array, original batch of point clouds
        Return:
          BxNx3 array, rotated batch of point clouds
    """
    rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
    for k in range(batch_data.shape[0]):
        angles = np.clip(angle_sigma*np.random.randn(3), -angle_clip, angle_clip)
        Rx = np.array([[1,0,0],
                       [0,np.cos(angles[0]),-np.sin(angles[0])],
                       [0,np.sin(angles[0]),np.cos(angles[0])]])
        Ry = np.array([[np.cos(angles[1]),0,np.sin(angles[1])],
                       [0,1,0],
                       [-np.sin(angles[1]),0,np.cos(angles[1])]])
        Rz = np.array([[np.cos(angles[2]),-np.sin(angles[2]),0],
                       [np.sin(angles[2]),np.cos(angles[2]),0],
                       [0,0,1]])
        R = np.dot(Rz, np.dot(Ry,Rx))
        shape_pc = batch_data[k, ...]
        rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), R)
    return rotated_data


@registry.register_processor("ulip_pc")
class ULIPPCProcessor(BlipImageBaseProcessor):
    def __init__(
        self, 
        npoints=8192,
        augment=False,
        uniform=True,
        ssl=False,
        oversample=False,
        use_height=False, 
    ):

        super().__init__()

        self.npoints=npoints
        self.augment=augment
        self.uniform=uniform
        self.ssl=ssl
        self.oversample=oversample
        self.use_height=use_height
        self.permutation = np.arange(self.npoints)


    def __call__(self, pc_data_path):
        if isinstance(pc_data_path, np.ndarray):
            pc_data = pc_data_path
        else:
            try:
                pc_data = np.load(pc_data_path, allow_pickle=True)['arr_0'].astype(np.float32)
            except:
                pc_data = IO.get(pc_data_path).astype(np.float32)
        data = pc_norm(pc_data)

        if self.uniform and self.npoints < data.shape[0]:
            data = farthest_point_sample(data, self.npoints)
        else:
            data = random_sample(self.permutation, data, self.npoints)

        if self.augment:
            data = random_point_dropout(data[None, ...])
            data = random_scale_point_cloud(data)
            data = shift_point_cloud(data)
            data = rotate_perturbation_point_cloud(data)
            data = rotate_point_cloud(data)
            data = data.squeeze()

        if self.ssl:
            data_for_aug = data[:]
            data_aug_1 = random_point_dropout(data_for_aug[None, ...])
            data_aug_1 = random_scale_point_cloud(data_aug_1, scale_low=0.5, scale_high=1.5)
            data_aug_1 = shift_point_cloud(data_aug_1, shift_range=0.4)
            data_aug_1 = rotate_perturbation_point_cloud(data_aug_1, angle_sigma=0.1, angle_clip=0.3)
            data_aug_1 = rotate_point_cloud(data_aug_1)
            data_aug_1 = data_aug_1.squeeze()

            data_aug_2 = random_point_dropout(data_for_aug[None, ...])
            data_aug_2 = random_scale_point_cloud(data_aug_2, scale_low=0.5, scale_high=1.5)
            data_aug_2 = shift_point_cloud(data_aug_2, shift_range=0.4)
            data_aug_2 = rotate_perturbation_point_cloud(data_aug_2, angle_sigma=0.1, angle_clip=0.3)
            data_aug_2 = rotate_point_cloud(data_aug_2)
            data_aug_2 = data_aug_2.squeeze()

        if self.use_height:
            self.gravity_dim = 1
            height_array = data[:, self.gravity_dim:self.gravity_dim + 1] - data[:,
                                                                       self.gravity_dim:self.gravity_dim + 1].min()
            data = np.concatenate((data, height_array), axis=1)
            data = torch.from_numpy(data).float()
        else:
            data = torch.from_numpy(data).float()
        
        if self.ssl:
            return {"data": data, "data_aug_1": data_aug_1, "data_aug_2": data_aug_2}
        else:
            return data
        
    @classmethod
    def from_config(cls, cfg=None):
        if cfg is None:
            cfg = OmegaConf.create()

        npoints= cfg.get('npoints', 8192)
        augment= cfg.get('augment',False)
        uniform= cfg.get('uniform',True)
        ssl= cfg.get('ssl',False)
        oversample= cfg.get('oversample',False)
        use_height= cfg.get('use_height',False)

        return cls(
            npoints=npoints,
            augment=augment,
            uniform=uniform,
            ssl=ssl,
            oversample=oversample,
            use_height=use_height, 
        )