File size: 11,009 Bytes
be13417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""

import json
import os
import pandas as pd
from tqdm import tqdm
from lavis.common.dist_utils import main_process, get_rank
from lavis.common.registry import registry
from lavis.tasks.base_task import BaseTask
from lavis.common.utils import is_convertible_to_int, is_url, cache_url

@registry.register_task("captioning")
class CaptionTask(BaseTask):
    def __init__(self, num_beams, max_len, min_len, repetition_penalty, length_penalty, top_p, temperature, evaluate, report_metric=True, annotation_file=None, sample_id_key="image_id", caption_key="caption", split=["val"], load_gt_from_file=False, img_ids = []):
        super().__init__()

        self.num_beams = num_beams
        self.max_len = max_len
        self.min_len = min_len
        self.repetition_penalty = repetition_penalty
        self.length_penalty = length_penalty
        self.top_p = top_p
        self.temperature = temperature
        self.evaluate = evaluate

        self.report_metric = report_metric
        self.annotation_file = annotation_file
        self.sample_id_key = sample_id_key
        self.caption_key = caption_key
        assert len(split) == 1, "Only support one split for evaluation."
        self.split = split[0]
        self.load_gt_from_file = load_gt_from_file
        self.img_ids = img_ids

    @classmethod
    def setup_task(cls, cfg):
        run_cfg = cfg.run_cfg

        num_beams = run_cfg.get("num_beams", 5)
        max_len = run_cfg.get("max_len", 30)
        min_len = run_cfg.get("min_len", 1)
        repetition_penalty = run_cfg.get("repetition_penalty", 1.15)
        length_penalty = run_cfg.get("length_penalty", 0.)
        top_p = run_cfg.get("top_p", 0.9)
        temperature = run_cfg.get("temperature", 1.)
        evaluate = run_cfg.evaluate

        report_metric = run_cfg.get("report_metric", True)
        annotation_file = run_cfg.get("annotation_file", None)
        sample_id_key = run_cfg.get("sample_id_key", "image_id")
        caption_key = run_cfg.get("caption_key", "caption")
        load_gt_from_file = run_cfg.get("load_gt_from_file", False)
        split = run_cfg.get("valid_splits", ["val"])
        img_ids = run_cfg.get("img_ids", []) # evaluate only subset of imgs

        return cls(
            num_beams=num_beams,
            max_len=max_len,
            min_len=min_len,
            repetition_penalty=repetition_penalty,
            length_penalty=length_penalty,
            top_p=top_p,
            temperature=temperature,
            evaluate=evaluate,
            report_metric=report_metric,
            annotation_file=annotation_file,
            sample_id_key=sample_id_key,
            caption_key=caption_key,
            split=split,
            load_gt_from_file=load_gt_from_file,
            img_ids=img_ids
        )

    def build_datasets(self, cfg):
        datasets = super().build_datasets(cfg)

        # get validation dataset name
        val_ds_name = []
        for name,d in datasets.items():
            if self.split in d:
                val_ds_name.append(name)
        if not val_ds_name:
            return datasets # no validation sets
        assert len(val_ds_name) == 1, "Only support one dataset for validation"
        val_ds_name = val_ds_name[0]

        # get question file, annotation file and anwser list in COCO format
        if self.annotation_file == None:
            if 'coco' not in val_ds_name: # coco is already precomputed in dataset
                self.annotation_file = os.path.join(registry.get_path("cache_root"),f'{val_ds_name}_gt', f'{val_ds_name}_{self.split}_annotations.json')
                if get_rank() == 0:
                    os.makedirs(os.path.join(registry.get_path("cache_root"),f'{val_ds_name}_gt'), exist_ok=True)
                    convert_to_coco_gt(datasets[val_ds_name], self.annotation_file, self.caption_key, self.sample_id_key, self.split, load_gt_from_file=self.load_gt_from_file, img_ids=self.img_ids)
        return datasets

    def valid_step(self, model, samples):
        results = []
        # run_cfg = slf.cfg.run_cfg
        captions = model.generate(
            samples,
            use_nucleus_sampling=False,
            num_beams=self.num_beams,
            max_length=self.max_len,
            min_length=self.min_len,
            repetition_penalty=self.repetition_penalty,
            length_penalty=self.length_penalty,
            top_p=self.top_p,
            temperature=self.temperature,
        )
        img_ids = samples[self.sample_id_key]
        for caption, img_id in zip(captions, img_ids):
            # not all img_ids are ints
            img_id = int(img_id) if is_convertible_to_int(img_id) else img_id
            if self.img_ids and img_id not in self.img_ids: # only include specified img_ids if specified
                continue
            results.append({"caption": caption, "image_id": img_id})

        return results

    def after_evaluation(self, val_result, split_name, epoch, **kwargs):
        eval_result_file = self.save_result(
            result=val_result,
            result_dir=registry.get_path("result_dir"),
            filename="{}_epoch{}".format(split_name, epoch),
            remove_duplicate="image_id",
        )

        if self.report_metric:
            metrics = self._report_metrics(
                eval_result_file=eval_result_file, split_name=split_name
            )
        else:
            metrics = {"agg_metrics": 0.0}

        return metrics

    @main_process
    def _report_metrics(self, eval_result_file, split_name):

        if self.annotation_file == None:
            # TODO better way to define this
            coco_gt_root = os.path.join(registry.get_path("cache_root"), "coco_gt")
            coco_val = coco_caption_eval(coco_gt_root, eval_result_file, split_name, img_ids=self.img_ids)
        else:
            coco_val = coco_caption_eval(None, eval_result_file, split_name, annotation_file=self.annotation_file, img_ids=self.img_ids)

        agg_metrics = coco_val.eval["CIDEr"] + coco_val.eval["Bleu_4"]
        log_stats = {split_name: {k: v for k, v in coco_val.eval.items()}}

        with open(
            os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a"
        ) as f:
            f.write(json.dumps(log_stats) + "\n")

        coco_res = {k: v for k, v in coco_val.eval.items()}
        coco_res["agg_metrics"] = agg_metrics

        return coco_res

def load_gt_file(file_path):
    if is_url(file_path):
        file_path = cache_url(file_path, registry.get_path("cache_root"))
    data = []
    if any(ext in file_path for ext in ['csv', 'tsv']):
        df = pd.read_csv(file_path)
        data.extend(df.to_dict(orient="records"))
        
    elif 'jsonl' in file_path:
        with open(file_path, "r") as f:
            data.extend([json.loads(line) for line in f])
    else:
        with open(file_path, "r") as f:
            loaded = json.load(f)
            if isinstance(loaded, list):
                data.extend(loaded)
            elif isinstance(loaded, dict):
                # assume that loaded data in file  is the corresponding caption to the key
                data.extend([{"sample_id": k, **v} if isinstance(v, dict) else {"sample_id": k, "caption": v} for k, v in loaded.items()])
    return data

def convert_to_coco_gt(data, outpath, caption_key, sample_id_key, split, load_gt_from_file=False, img_ids=[]):
    gt_data = {"annotations":[], "images":[]}
    if load_gt_from_file:
        print(f"Generating ground truth file for evaluation from {load_gt_from_file}....")
        data = load_gt_file(load_gt_from_file)
        for ann in data:
            captions = ann[caption_key]
            img_id = int(ann[sample_id_key]) if is_convertible_to_int(ann[sample_id_key]) else ann[sample_id_key]
            if img_ids and img_id not in img_ids: # only include specified img_ids if specified
                continue
            gt_data["images"].append({"id":img_id})
            if isinstance(captions, str):
                gt_data["annotations"].append({"image_id":img_id, "caption":captions, "id":img_id})
            else:   
                gt_data["annotations"].extend([{"image_id":img_id, "caption":c, "id":img_id} for c in captions])
    else:
        print(f"Generating ground truth file for evaluation....")
        for i,ann in tqdm(enumerate(data[split])):
            captions = data[split].annotation[i][caption_key]
            img_id = int(ann[sample_id_key]) if is_convertible_to_int(ann[sample_id_key]) else ann[sample_id_key]
            if img_ids and img_id not in img_ids: # only include specified img_ids if specified
                continue
            gt_data["images"].append({"id":img_id})
            if isinstance(captions, str):
                gt_data["annotations"].append({"image_id":img_id, "caption":captions, "id":img_id})
            else:   
                gt_data["annotations"].extend([{"image_id":img_id, "caption":c, "id":img_id} for c in captions])
    json.dump(gt_data, open(outpath, 'w'))
    print(f"Saved annotations at {outpath}")

# TODO better structure for this.
from pycocoevalcap.eval import COCOEvalCap
from pycocotools.coco import COCO
from torchvision.datasets.utils import download_url


def coco_caption_eval(coco_gt_root, results_file, split, annotation_file=None, img_ids=[]):

    if annotation_file == None:
        urls = {
            "val": "https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val_gt.json",
            "test": "https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test_gt.json",
        }
        filenames = {
            "val": "coco_karpathy_val_gt.json",
            "test": "coco_karpathy_test_gt.json",
        }

        download_url(urls[split], coco_gt_root)
        annotation_file = os.path.join(coco_gt_root, filenames[split])
    if is_url(annotation_file):
        annotation_file = cache_url(annotation_file, registry.get_path("cache_root"))
        
    # create coco object and coco_result object
    coco = COCO(annotation_file)
    coco_result = coco.loadRes(results_file)

    # create coco_eval object by taking coco and coco_result
    coco_eval = COCOEvalCap(coco, coco_result)

    # evaluate on a subset of images by setting
    if img_ids:
        coco_eval.params['image_id'] = coco_result.getImgIds()
    # please remove this line when evaluating the full validation set
    # coco_eval.params['image_id'] = coco_result.getImgIds()

    # evaluate results
    # SPICE will take a few minutes the first time, but speeds up due to caching
    coco_eval.evaluate()

    # print output evaluation scores
    for metric, score in coco_eval.eval.items():
        print(f"{metric}: {score:.3f}")

    return coco_eval