Spaces:
Runtime error
Runtime error
# Originally from https://github.com/google/prompt-to-prompt/blob/main/ptp_utils.py | |
# | |
# Copyright 2022 Google LLC | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import abc | |
import cv2 | |
import numpy as np | |
import torch | |
from IPython.display import display | |
from PIL import Image | |
from diffusers.models.cross_attention import CrossAttention | |
from typing import Union, Tuple, List, Dict, Optional | |
import torch.nn.functional as nnf | |
def text_under_image(image: np.ndarray, text: str, text_color: Tuple[int, int, int] = (0, 0, 0)) -> np.ndarray: | |
h, w, c = image.shape | |
offset = int(h * .2) | |
img = np.ones((h + offset, w, c), dtype=np.uint8) * 255 | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
img[:h] = image | |
textsize = cv2.getTextSize(text, font, 1, 2)[0] | |
text_x, text_y = (w - textsize[0]) // 2, h + offset - textsize[1] // 2 | |
cv2.putText(img, text, (text_x, text_y), font, 1, text_color, 2) | |
return img | |
def view_images(images: Union[np.ndarray, List], | |
num_rows: int = 1, | |
offset_ratio: float = 0.02, | |
display_image: bool = True) -> Image.Image: | |
""" Displays a list of images in a grid. """ | |
if type(images) is list: | |
num_empty = len(images) % num_rows | |
elif images.ndim == 4: | |
num_empty = images.shape[0] % num_rows | |
else: | |
images = [images] | |
num_empty = 0 | |
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255 | |
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty | |
num_items = len(images) | |
h, w, c = images[0].shape | |
offset = int(h * offset_ratio) | |
num_cols = num_items // num_rows | |
image_ = np.ones((h * num_rows + offset * (num_rows - 1), | |
w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255 | |
for i in range(num_rows): | |
for j in range(num_cols): | |
image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[ | |
i * num_cols + j] | |
pil_img = Image.fromarray(image_) | |
if display_image: | |
display(pil_img) | |
return pil_img | |
class AttentionControl(abc.ABC): | |
def step_callback(self, x_t): | |
return x_t | |
def between_steps(self): | |
return | |
def num_uncond_att_layers(self): | |
return 0 | |
def forward (self, attn, is_cross: bool, place_in_unet: str): | |
raise NotImplementedError | |
def __call__(self, attn, is_cross: bool, place_in_unet: str): | |
if self.cur_att_layer >= self.num_uncond_att_layers: | |
h = attn.shape[0] | |
attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet) | |
self.cur_att_layer += 1 | |
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers: | |
self.cur_att_layer = 0 | |
self.cur_step += 1 | |
self.between_steps() | |
return attn | |
def reset(self): | |
self.cur_step = 0 | |
self.cur_att_layer = 0 | |
def __init__(self): | |
self.cur_step = 0 | |
self.num_att_layers = -1 | |
self.cur_att_layer = 0 | |
class EmptyControl(AttentionControl): | |
def forward(self, attn, is_cross: bool, place_in_unet: str): | |
return attn | |
class AttentionStore(AttentionControl): | |
def get_empty_store(): | |
return {"down_cross": [], "mid_cross": [], "up_cross": [], | |
"down_self": [], "mid_self": [], "up_self": []} | |
def forward(self, attn, is_cross: bool, place_in_unet: str): | |
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}" | |
if attn.shape[1] <= 32 ** 2: # avoid memory overhead | |
self.step_store[key].append(attn) | |
return attn | |
def between_steps(self): | |
if len(self.attention_store) == 0: | |
self.attention_store = self.step_store | |
else: | |
for key in self.attention_store: | |
for i in range(len(self.attention_store[key])): | |
self.attention_store[key][i] += self.step_store[key][i] | |
self.step_store = self.get_empty_store() | |
def get_average_attention(self): | |
average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store} | |
return average_attention | |
def reset(self): | |
super(AttentionStore, self).reset() | |
self.step_store = self.get_empty_store() | |
self.attention_store = {} | |
def __init__(self): | |
super(AttentionStore, self).__init__() | |
self.step_store = self.get_empty_store() | |
self.attention_store = {} | |
class LocalBlend: | |
def __call__(self, x_t, attention_store): | |
k = 1 | |
maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3] | |
maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, self.max_num_words) for item in maps] | |
maps = torch.cat(maps, dim=1) | |
maps = (maps * self.alpha_layers).sum(-1).mean(1) | |
mask = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 +1), (1, 1), padding=(k, k)) | |
mask = nnf.interpolate(mask, size=(x_t.shape[2:])) | |
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0] | |
mask = mask.gt(self.threshold) | |
mask = (mask[:1] + mask[1:]).float() | |
x_t = x_t[:1] + mask * (x_t - x_t[:1]) | |
return x_t | |
def __init__(self, prompts: List[str], words, tokenizer, device, threshold=.3, max_num_words=77): | |
self.max_num_words = 77 | |
alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, self.max_num_words) | |
for i, (prompt, words_) in enumerate(zip(prompts, words)): | |
if type(words_) is str: | |
words_ = [words_] | |
for word in words_: | |
ind = get_word_inds(prompt, word, tokenizer) | |
alpha_layers[i, :, :, :, :, ind] = 1 | |
self.alpha_layers = alpha_layers.to(device) | |
self.threshold = threshold | |
class AttentionControlEdit(AttentionStore, abc.ABC): | |
def step_callback(self, x_t): | |
if self.local_blend is not None: | |
x_t = self.local_blend(x_t, self.attention_store) | |
return x_t | |
def replace_self_attention(self, attn_base, att_replace): | |
if att_replace.shape[2] <= 16 ** 2: | |
return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape) | |
else: | |
return att_replace | |
def replace_cross_attention(self, attn_base, att_replace): | |
raise NotImplementedError | |
def forward(self, attn, is_cross: bool, place_in_unet: str): | |
super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet) | |
# FIXME not replace correctly | |
if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]): | |
h = attn.shape[0] // (self.batch_size) | |
attn = attn.reshape(self.batch_size, h, *attn.shape[1:]) | |
attn_base, attn_repalce = attn[0], attn[1:] | |
if is_cross: | |
alpha_words = self.cross_replace_alpha[self.cur_step] | |
attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce | |
attn[1:] = attn_repalce_new | |
else: | |
attn[1:] = self.replace_self_attention(attn_base, attn_repalce) | |
attn = attn.reshape(self.batch_size * h, *attn.shape[2:]) | |
return attn | |
def __init__(self, prompts, num_steps: int, | |
cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]], | |
self_replace_steps: Union[float, Tuple[float, float]], | |
local_blend: Optional[LocalBlend], | |
tokenizer, | |
device): | |
super(AttentionControlEdit, self).__init__() | |
# add tokenizer and device here | |
self.tokenizer = tokenizer | |
self.device = device | |
self.batch_size = len(prompts) | |
self.cross_replace_alpha = get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, self.tokenizer).to(self.device) | |
if type(self_replace_steps) is float: | |
self_replace_steps = 0, self_replace_steps | |
self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1]) | |
self.local_blend = local_blend | |
class AttentionReplace(AttentionControlEdit): | |
def replace_cross_attention(self, attn_base, att_replace): | |
return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper) | |
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, | |
local_blend: Optional[LocalBlend] = None, tokenizer=None, device=None): | |
super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, tokenizer, device) | |
self.mapper = get_replacement_mapper(prompts, self.tokenizer).to(self.device) | |
class AttentionRefine(AttentionControlEdit): | |
def replace_cross_attention(self, attn_base, att_replace): | |
# example mapper: | |
# because we insert subject embeddings at position 2, and we have | |
# 16 subject embeddings in total. Therefore, mapper[2:18] = -1. | |
# tokens before subject embeddings correspond to themselves, so mapper[:2] = 0, 1. | |
# tokens after subject embeddings correspond to themselves, so mapper[18:] = 2, 3, ... | |
# tensor([ 0, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, | |
# 2, 3, 4, 5, 6, 7, 8, 9, 10, 27, 28, 29, 30, 31, 32, 33, 34, 35, | |
# 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, | |
# 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, | |
# 72, 73, 74, 75, 76], device='cuda:0') | |
# | |
# example alphas: 0 means using new attention, 1 means using old attention | |
# tensor([[[[1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., | |
# 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., | |
# 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., | |
# 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., | |
# 1., 1., 1., 1., 1., 1., 1., 1., 1.]]]], device='cuda:0') | |
attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3) | |
attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas) | |
return attn_replace | |
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, | |
local_blend: Optional[LocalBlend] = None, tokenizer=None, device=None): | |
super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, tokenizer, device) | |
self.mapper, alphas = get_refinement_mapper(prompts, self.tokenizer) | |
self.mapper, alphas = self.mapper.to(self.device), alphas.to(self.device) | |
self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1]) | |
class AttentionReweight(AttentionControlEdit): | |
def replace_cross_attention(self, attn_base, att_replace): | |
if self.prev_controller is not None: | |
attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace) | |
attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :] | |
return attn_replace | |
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, equalizer, | |
local_blend: Optional[LocalBlend] = None, controller: Optional[AttentionControlEdit] = None, tokenizer=None, device=None): | |
super(AttentionReweight, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, tokenizer, device) | |
self.equalizer = equalizer.to(self.device) | |
self.prev_controller = controller | |
def get_equalizer( | |
text: str, | |
word_select: Union[int, Tuple[int, ...]], | |
values: Union[List[float], Tuple[float, ...]], | |
tokenizer, | |
num_subject_token=-1, | |
): | |
if num_subject_token > 0: | |
tokens = text.split(" ") | |
tokens = [tokens[0]] + ["sks"] * num_subject_token + tokens[1:] | |
new_text = " ".join(tokens) | |
text = new_text | |
if type(word_select) is int or type(word_select) is str: | |
word_select = (word_select,) | |
equalizer = torch.ones(len(values), 77) | |
values = torch.tensor(values, dtype=torch.float32) | |
for word in word_select: | |
inds = get_word_inds(text, word, tokenizer) | |
equalizer[:, inds] = values | |
return equalizer | |
def update_alpha_time_word(alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int, | |
word_inds: Optional[torch.Tensor]=None): | |
if type(bounds) is float: | |
bounds = 0, bounds | |
start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0]) | |
if word_inds is None: | |
word_inds = torch.arange(alpha.shape[2]) | |
alpha[: start, prompt_ind, word_inds] = 0 | |
alpha[start: end, prompt_ind, word_inds] = 1 | |
alpha[end:, prompt_ind, word_inds] = 0 | |
return alpha | |
def get_time_words_attention_alpha(prompts, num_steps, | |
cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]], | |
tokenizer, max_num_words=77): | |
if type(cross_replace_steps) is not dict: | |
cross_replace_steps = {"default_": cross_replace_steps} | |
if "default_" not in cross_replace_steps: | |
cross_replace_steps["default_"] = (0., 1.) | |
alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words) | |
for i in range(len(prompts) - 1): | |
alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"], | |
i) | |
for key, item in cross_replace_steps.items(): | |
if key != "default_": | |
inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))] | |
for i, ind in enumerate(inds): | |
if len(ind) > 0: | |
alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind) | |
alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words) | |
return alpha_time_words | |
# seg_alinger | |
class ScoreParams: | |
def __init__(self, gap, match, mismatch): | |
self.gap = gap | |
self.match = match | |
self.mismatch = mismatch | |
def mis_match_char(self, x, y): | |
if x != y: | |
return self.mismatch | |
else: | |
return self.match | |
def get_matrix(size_x, size_y, gap): | |
matrix = [] | |
for i in range(len(size_x) + 1): | |
sub_matrix = [] | |
for j in range(len(size_y) + 1): | |
sub_matrix.append(0) | |
matrix.append(sub_matrix) | |
for j in range(1, len(size_y) + 1): | |
matrix[0][j] = j*gap | |
for i in range(1, len(size_x) + 1): | |
matrix[i][0] = i*gap | |
return matrix | |
def get_matrix(size_x, size_y, gap): | |
matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32) | |
matrix[0, 1:] = (np.arange(size_y) + 1) * gap | |
matrix[1:, 0] = (np.arange(size_x) + 1) * gap | |
return matrix | |
def get_traceback_matrix(size_x, size_y): | |
matrix = np.zeros((size_x + 1, size_y +1), dtype=np.int32) | |
matrix[0, 1:] = 1 | |
matrix[1:, 0] = 2 | |
matrix[0, 0] = 4 | |
return matrix | |
def global_align(x, y, score): | |
matrix = get_matrix(len(x), len(y), score.gap) | |
trace_back = get_traceback_matrix(len(x), len(y)) | |
for i in range(1, len(x) + 1): | |
for j in range(1, len(y) + 1): | |
left = matrix[i, j - 1] + score.gap | |
up = matrix[i - 1, j] + score.gap | |
diag = matrix[i - 1, j - 1] + score.mis_match_char(x[i - 1], y[j - 1]) | |
matrix[i, j] = max(left, up, diag) | |
if matrix[i, j] == left: | |
trace_back[i, j] = 1 | |
elif matrix[i, j] == up: | |
trace_back[i, j] = 2 | |
else: | |
trace_back[i, j] = 3 | |
return matrix, trace_back | |
def get_aligned_sequences(x, y, trace_back): | |
x_seq = [] | |
y_seq = [] | |
i = len(x) | |
j = len(y) | |
mapper_y_to_x = [] | |
while i > 0 or j > 0: | |
if trace_back[i, j] == 3: | |
x_seq.append(x[i-1]) | |
y_seq.append(y[j-1]) | |
i = i-1 | |
j = j-1 | |
mapper_y_to_x.append((j, i)) | |
elif trace_back[i][j] == 1: | |
x_seq.append('-') | |
y_seq.append(y[j-1]) | |
j = j-1 | |
mapper_y_to_x.append((j, -1)) | |
elif trace_back[i][j] == 2: | |
x_seq.append(x[i-1]) | |
y_seq.append('-') | |
i = i-1 | |
elif trace_back[i][j] == 4: | |
break | |
mapper_y_to_x.reverse() | |
return x_seq, y_seq, torch.tensor(mapper_y_to_x, dtype=torch.int64) | |
def get_mapper(x: str, y: str, tokenizer, max_len=77): | |
x_seq = tokenizer.encode(x) | |
y_seq = tokenizer.encode(y) | |
score = ScoreParams(0, 1, -1) | |
matrix, trace_back = global_align(x_seq, y_seq, score) | |
mapper_base = get_aligned_sequences(x_seq, y_seq, trace_back)[-1] | |
alphas = torch.ones(max_len) | |
alphas[: mapper_base.shape[0]] = mapper_base[:, 1].ne(-1).float() | |
mapper = torch.zeros(max_len, dtype=torch.int64) | |
mapper[:mapper_base.shape[0]] = mapper_base[:, 1] | |
mapper[mapper_base.shape[0]:] = len(y_seq) + torch.arange(max_len - len(y_seq)) | |
return mapper, alphas | |
def get_refinement_mapper(prompts, tokenizer, max_len=77): | |
x_seq = prompts[0] | |
mappers, alphas = [], [] | |
for i in range(1, len(prompts)): | |
mapper, alpha = get_mapper(x_seq, prompts[i], tokenizer, max_len) | |
mappers.append(mapper) | |
alphas.append(alpha) | |
return torch.stack(mappers), torch.stack(alphas) | |
def get_word_inds(text: str, word_place: int, tokenizer): | |
split_text = text.split(" ") | |
if type(word_place) is str: | |
word_place = [i for i, word in enumerate(split_text) if word_place == word] | |
elif type(word_place) is int: | |
word_place = [word_place] | |
out = [] | |
if len(word_place) > 0: | |
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1] | |
cur_len, ptr = 0, 0 | |
for i in range(len(words_encode)): | |
cur_len += len(words_encode[i]) | |
if ptr in word_place: | |
out.append(i + 1) | |
if cur_len >= len(split_text[ptr]): | |
ptr += 1 | |
cur_len = 0 | |
return np.array(out) | |
def get_replacement_mapper_(x: str, y: str, tokenizer, max_len=77): | |
words_x = x.split(' ') | |
words_y = y.split(' ') | |
if len(words_x) != len(words_y): | |
raise ValueError(f"attention replacement edit can only be applied on prompts with the same length" | |
f" but prompt A has {len(words_x)} words and prompt B has {len(words_y)} words.") | |
inds_replace = [i for i in range(len(words_y)) if words_y[i] != words_x[i]] | |
inds_source = [get_word_inds(x, i, tokenizer) for i in inds_replace] | |
inds_target = [get_word_inds(y, i, tokenizer) for i in inds_replace] | |
mapper = np.zeros((max_len, max_len)) | |
i = j = 0 | |
cur_inds = 0 | |
while i < max_len and j < max_len: | |
if cur_inds < len(inds_source) and inds_source[cur_inds][0] == i: | |
inds_source_, inds_target_ = inds_source[cur_inds], inds_target[cur_inds] | |
if len(inds_source_) == len(inds_target_): | |
mapper[inds_source_, inds_target_] = 1 | |
else: | |
ratio = 1 / len(inds_target_) | |
for i_t in inds_target_: | |
mapper[inds_source_, i_t] = ratio | |
cur_inds += 1 | |
i += len(inds_source_) | |
j += len(inds_target_) | |
elif cur_inds < len(inds_source): | |
mapper[i, j] = 1 | |
i += 1 | |
j += 1 | |
else: | |
mapper[j, j] = 1 | |
i += 1 | |
j += 1 | |
return torch.from_numpy(mapper).float() | |
def get_replacement_mapper(prompts, tokenizer, max_len=77): | |
x_seq = prompts[0] | |
mappers = [] | |
for i in range(1, len(prompts)): | |
mapper = get_replacement_mapper_(x_seq, prompts[i], tokenizer, max_len) | |
mappers.append(mapper) | |
return torch.stack(mappers) | |
class P2PCrossAttnProcessor: | |
def __init__(self, controller, place_in_unet): | |
super().__init__() | |
self.controller = controller | |
self.place_in_unet = place_in_unet | |
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None): | |
batch_size, sequence_length, _ = hidden_states.shape | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size=batch_size) | |
query = attn.to_q(hidden_states) | |
is_cross = encoder_hidden_states is not None | |
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
# one line change | |
if self.controller is not None: | |
self.controller(attention_probs, is_cross, self.place_in_unet) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
return hidden_states | |